Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36808578

RESUMO

PURPOSE: To investigate the effect of Rose Bengal photodynamic therapy (RB-PDT) on viability and proliferation of human limbal epithelial stem cells (T-LSCs), human corneal epithelial cells (HCE-T), human limbal fibroblasts (LFCs), and human normal and keratoconus fibroblasts (HCFs and KC-HCFs) in vitro. METHODS: T-LSCs and HCE-T cell lines were used in this research. LFCs were isolated from healthy donor corneal limbi (n = 5), HCFs from healthy human donor corneas (n = 5), and KC-HCFs from penetrating keratoplasties of keratoconus patients (n = 5). After cell culture, RB-PDT was performed using 0.001% RB concentration and 565 nm wavelength illumination with 0.14 to 0.7 J/cm2 fluence. The XTT and the BrdU assays were used to assess cell viability and proliferation 24 h after RB-PDT. RESULTS: RB or illumination alone did not change cell viability or proliferation in any of the cell types (p ≥ 0.1). However, following RB-PDT, viability decreased significantly from 0.17 J/cm2 fluence in HCFs (p < 0.001) and KC-HCFs (p < 0.0001), and from 0.35 J/cm2 fluence in T-LSCs (p < 0.001), HCE-T (p < 0.05), and LFCs ((p < 0.0001). Cell proliferation decreased significantly from 0.14 J/cm2 fluence in T-LSCs (p < 0.0001), HCE-T (p < 0.05), and KC-HCFs (p < 0.001) and from 0.17 J/cm2 fluence in HCFs (p < 0.05). Regarding LFCs proliferation, no values could be determined by the BrdU assay. CONCLUSIONS: Though RB-PDT seems to be a safe and effective treatment method in vivo, its dose-dependent phototoxicity on corneal epithelial and stromal cells has to be respected. The data and experimental parameters applied in this study may provide a reliable reference for future investigations.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37130569

RESUMO

PURPOSE: To assess various potential factors on human limbal epithelial cell (LEC) outgrowth in vitro using corneal donor tissue following long-term storage (organ culture) and a stepwise linear regression algorithm. METHODS: Of 215 donors, 304 corneoscleral rings were used for our experiments. For digestion of the limbal tissue and isolation of the limbal epithelial cells, the tissue pieces were incubated with 4.0 mg/mL collagenase A at 37 °C with 95% relative humidity and a 5% CO2 atmosphere overnight. Thereafter, limbal epithelial cells were separated from limbal keratocytes using a 20-µm CellTricks filter. The separated human LECs were cultured in keratinocyte serum-free medium medium, 1% penicillin/streptomycin (P/S), 0.02% epidermal growth factor (EGF), and 0.3% bovine pituitary extract (BPE). The potential effect of donor age (covariate), postmortem time (covariate), medium time (covariate), size of the used corneoscleral ring (360°, 270°180°, 120°, 90°, less than 90°) (covariate), endothelial cell density (ECD) (covariate), gender (factor), number of culture medium changes during organ culture (factor), and origin of the donor (donating institution and storing institution, factor) on the limbal epithelial cell outgrowth was analyzed with a stepwise linear regression algorithm. RESULTS: The rate of successful human LEC outgrowth was 37.5%. From the stepwise linear regression algorithm, we found out that the relevant influencing parameters on the LEC growth were intercept (p < 0.001), donor age (p = 0.002), number of culture medium changes during organ culture (p < 0.001), total medium time (p = 0.181), and size of the used corneoscleral ring (p = 0.007), as well as medium time × size of the corneoscleral ring (p = 0.007). CONCLUSIONS: The success of LEC outgrowth increases with lower donor age, lower number of organ culture medium changes during storage, shorter medium time in organ culture, and smaller corneoscleral ring size. Our stepwise linear regression algorithm may help us in optimizing LEC cultures in vitro.

3.
Exp Eye Res ; 215: 108904, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34954205

RESUMO

PAX6 haploinsufficiency related aniridia is characterized by disorder of limbal epithelial cells (LECs) and aniridia related keratopathy. In the limbal epithelial cells of aniridia patients, deregulated retinoic acid (RA) signaling components were identified. We aimed to visualize differentiation marker and RA signaling component expression in LECs, combining a differentiation triggering growth condition with a small interfering RNA (siRNA) based aniridia cell model (PAX6 knock down). Primary LECs were isolated from corneoscleral rims of healthy donors and cultured in serum free low Ca2+ medium (KSFM) and in KSFM supplemented with 0.9 mmol/L Ca2+. In addition, LECs were treated with siRNA against PAX6. DSG1, PAX6, KRT12, KRT 3, ADH7, RDH10, ALDH1A1, ALDH3A1, STRA6, CYP1B1, RBP1, CRABP2, FABP5, PPARG, VEGFA and ELOVL7 expression was determined using qPCR and western blot. DSG1, FABP5, ADH7, ALDH1A1, RBP1, CRABP2 and PAX6 mRNA and FABP5 protein expression increased (p ≤ 0.03), PPARG, CYP1B1 mRNA expression decreased (p ≤ 0.0003) and DSG1 protein expression was only visible after Ca2+ supplementation. After PAX6 knock down and Ca2+ supplementation, ADH7 and ALDH1A1 mRNA and DSG1 and FABP5 protein expression decreased (p ≤ 0.04), compared to Ca2+ supplementation alone. Using our cell model, with Ca2+ supplementation and PAX6 knockdown with siRNA treatment against PAX6, we provide evidence that haploinsufficiency of the master regulatory gene PAX6 contributes to differentiation defect in the corneal epithelium through alterations of RA signalling. Upon PAX6 knockdown, DSG1 differentiation marker and FABP5 RA signaling component mRNA expression decreases. A similar effect becomes apparent at protein level though differentiation triggering Ca2+ supplementation in the siRNA-based aniridia cell model. Expression data from this cell model and from our siRNA aniridia cell model strongly indicate that FABP5 expression is PAX6 dependent. These new findings may lead to a better understanding of differentiation processes in LECs and are able to explain the insufficient cell function in AAK.


Assuntos
Aniridia , Desmogleína 1 , Proteínas de Ligação a Ácido Graxo , Fator de Transcrição PAX6 , Aniridia/genética , Antígenos de Diferenciação , Desmogleína 1/biossíntese , Desmogleína 1/genética , Células Epiteliais/metabolismo , Proteínas de Ligação a Ácido Graxo/biossíntese , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Humanos , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Tretinoína/metabolismo
4.
Cytokine ; 126: 154862, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31634687

RESUMO

Stimulation of H295R adrenocortical carcinoma cells with angiotensin II or cytokines induces the secretion of the chemokine interleukin-8 (IL-8). Here, we have analyzed the molecular mechanism of stimulus-induced IL-8 expression. IL-8 expression and IL-8 promoter activity increased in H295R cells expressing an activated Gαq-coupled designer receptor. H295R cells stimulated with either interleukin-1ß (IL-1ß) or phorbol ester also showed elevated IL-8 mRNA levels and higher IL-8 promoter activities. Deletion and point mutations of the IL-8 promoter revealed that the AP-1 binding site within the IL-8 promoter is essential to connect designer receptor stimulation with the transcriptional activation of the IL-8 gene. Expression of a constitutively active mutant of c-Jun, or expression of constitutively active mutants of the protein kinases MEKK1 and MKK6 confirmed that the IL-8 gene is a bona fide target of AP-1 in adrenocortical carcinoma cells. Upregulation of IL-8 expression in IL-1ß-treated H295R cells required NF-κB while the phorbol ester TPA used both the AP-1 and NF-κB sites of the IL-8 gene to stimulate IL-8 expression. These data were corroborated in experiments with chromatin-embedded AP-1 or NF-κB-responsive reporter genes. While stimulation of Gαq-coupled designer receptors increased the AP-1 activity in the cells, IL-1ß specifically stimulated NF-κB-regulated transcription. Stimulation of the cells with TPA increased both AP-1 and NF-κB activities. We conclude that stimulation of Gαq-coupled designer receptors or IL-1 receptors triggers distinct signaling pathways in H295R cells leading to the activation of either AP-1 or NF-κB. Nevertheless, both signaling cascades converge to the IL-8 gene, inducing IL-8 gene transcription.


Assuntos
Neoplasias do Córtex Suprarrenal/metabolismo , Carcinoma Adrenocortical/metabolismo , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição AP-1/metabolismo , Neoplasias do Córtex Suprarrenal/genética , Carcinoma Adrenocortical/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Genes jun/genética , Humanos , Interleucina-1beta/farmacologia , Interleucina-8/genética , MAP Quinase Quinase 6/genética , MAP Quinase Quinase 6/metabolismo , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo , Mutação Puntual , Regiões Promotoras Genéticas , Deleção de Sequência , Acetato de Tetradecanoilforbol/farmacologia , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Regulação para Cima
5.
Pharmacol Res ; 134: 238-245, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30018026

RESUMO

The polyphenol resveratrol activates stimulus-regulated transcription factors, including activator protein-1 (AP-1). As part of a search for resveratrol-regulated target genes we analyzed the gene encoding the chemokine interleukin-8 (IL-8) which is regulated by AP-1. Here, we show that treatment of HEK293 cells with resveratrol induced the expression of IL-8 and activated transcription of a chromatin-embedded IL-8 promoter-controlled reporter gene. Mutational analysis of the IL-8 promoter revealed that it was not the AP-1 binding site, but rather the NF-κB site that was essential to connect resveratrol stimulation with the transcriptional activation of the IL-8 gene. Thus, the NF-κB site of the IL-8 gene functions as resveratrol-responsive element. The analysis of an NF-κB-responsive reporter gene, controlled by the HIV-1 long terminal repeat (LTR), showed that resveratrol stimulation increased the transcriptional activity of NF-κB. These data were corroborated by an experiment showing that incubation of the cells with the NF-κB inhibitor JSH-23 attenuated resveratrol-induced activation of the IL-8 promoter and reduced the cellular NF-κB activity following stimulation of the cells with resveratrol. The protein kinase extracellular signal-regulated protein kinase ERK1/2 was identified to function as signal transducer connecting resveratrol stimulation with the activation of NF-κB and IL-8 promoter-controlled transcription. We conclude that resveratrol, proposed to exhibit anti-inflammatory activity, stimulates expression of the pro-inflammatory chemokine IL-8 via NF-κB, which is known as an important mediator of inflammatory processes.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Resveratrol/farmacologia , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Sítios de Ligação , Células CACO-2 , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Inflamação/genética , Inflamação/metabolismo , Interleucina-8/genética , NF-kappa B/genética , Regiões Promotoras Genéticas , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima
6.
Biochem Pharmacol ; 192: 114696, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34302794

RESUMO

Insulin binding to the insulin receptor triggers intracellular signaling cascades involving the activation of protein and lipid kinases. As a result, multiple biological functions of the cells are changed. Here, we analyzed the regulation and signaling cascades leading to insulin-induced activation of the stimulus-responsive transcription factors. For the analyses, we used chromatin-embedded reporter genes having a cellular nucleosomal organisation, and fibroblasts expressing human insulin receptors (HIRcB cells). The results show that stimulation of the insulin receptor induced the expression of the transcription factor Egr-1. Attenuation of Egr-1 promoter activation was observed following expression of a dominant-negative mutant of the ternary complex factor Elk-1. These data were corroborated by experiments showing that insulin receptor stimulation increased the transcriptional activation potential of Elk-1. In addition, the transcriptional activity of AP-1 was significantly elevated in insulin-stimulated HIRcB cells. Expression of the dominant-negative mutant of Elk-1 reduced insulin-induced activation of AP-1, indicating that Elk-1 controls both serum response element and AP-1-regulated transcription. Moreover, we show that stimulation of the insulin receptor activates cyclic AMP response element (CRE)-controlled transcription, involving the transcription factor CREB. Insulin-induced transcription of Elk-1 and CREB-controlled reporter genes was attenuated by overexpression of MAP kinase phosphatase-1 or a constitutively active mutant of calcineurin A, indicating that both phosphatases are part of a negative feedback loop for reducing insulin-mediated gene transcription. Finally, we show that expression of the adenoviral protein E1A selectively reduced CRE-mediated transcription following stimulation of the insulin receptor. These data indicate that insulin-regulated transcription of CRE-containing genes is under epigenetic control.


Assuntos
Antígenos CD/genética , Antígenos CD/metabolismo , Genes Precoces/fisiologia , Insulina/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transcrição Gênica/fisiologia , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Genes Precoces/efeitos dos fármacos , Humanos , Insulina/farmacologia , Receptor de Insulina/agonistas , Transcrição Gênica/efeitos dos fármacos
7.
Biochem Pharmacol ; 177: 113936, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32224140

RESUMO

The TRPM8 cation channel can be activated by the cooling compound icilin. Recently, we showed that stimulation of TRPM8 channels induces a signaling cascade leading to the activation of the transcription factor AP-1. Additionally, expression of the AP-1 constituent c-Fos has been shown to be induced following TRPM8 stimulation. c-Fos is frequently used as a marker for neuronal activity. Here, we have analyzed the mechanism connecting TRPM8 stimulation and c-Fos expression. Furthermore, we analyzed the expression of the neuronal activity-responsive transcription factor Egr-1 following TRPM8 activation. The results show that icilin-induced stimulation of TRPM8 channels increased c-Fos promoter activity and induced c-Fos expression. Moreover, icilin stimulation increased Egr-1 promoter activity and induced the expression of Egr-1. Pharmacological inhibition of TRPM8 blocked the icilin-induced expression of Egr-1 and c-Fos. An influx of Ca2+ ions into the cells via TRPM8 was necessary to stimulate Egr-1 and c-Fos expression following icilin treatment. Genetic experiments revealed that serum response elements within the Egr-1 and c-Fos promoters are crucial to couple TRPM8 stimulation with enhanced transcription of both the Egr-1 and c-Fos genes. These data were corroborated by experiments showing that TRPM8 stimulation increased the transcriptional activation potential of Elk-1, a SRE binding protein. c-Fos is important for neuronal excitability and survival. Egr-1 plays an important role in synaptic plasticity, consolidation and reconsolidation of long-term memory. Elk-1 may preserve neurons against toxic insults but may also induce depressive behaviour. The fact that TRPM8 stimulation activates the transcription factors c-Fos, Egr-1, and Elk-1 connects TRPM8 signaling with maintaining important brain functions.


Assuntos
Cálcio/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Genes fos , Íons/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Pirimidinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPM/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismo , Canais de Cálcio/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Transferência de Genes , Células HEK293 , Humanos , Regiões Promotoras Genéticas , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Proteínas Elk-1 do Domínio ets/genética
8.
Eur J Pharmacol ; 886: 173357, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-32758574

RESUMO

Transient receptor potential canonical-6 (TRPC6) channels are non-selective cation channels that can be activated by hyperforin, a constituent of Hypericum perforatum. TRPC6 activation has been linked to a variety of biological functions and pathologies, including focal segmental glomerulosclerosis and the development of various tumor entities. Thus, TRPC6 is an interesting drug target, and a specific pharmacological inhibitor would be very valuable for both basic research and therapy of TRPC6-mediated human pathologies. Here, we assessed the biological activity of various TRP channel inhibitors on hyperforin-stimulated TRPC6 channel signaling. Hyperforin stimulates the activity of the transcription factor AP-1 via TRPC6. Expression experiments involving a TRPC6-specific small hairpin RNA confirmed that hyperforin-induced gene transcription requires TRPC6. Cellular AP-1 activity was measured to assess which compound interrupted the TRPC6-induced intracellular signaling cascade. The results show that the compounds 2-APB, clotrimazole, BCTC, TC-I 2014, SAR 7334, and larixyl acetate blocked TRPC6-mediated activation of AP-1. In contrast, the TRPM8-specific inhibitor RQ-00203078 did not inhibit TRPC6-mediated signaling. 2-APB, clotrimazole, BCTC, and TC-I 2014 are broad-spectrum Ca2+ channel inhibitors, while SAR 7334 and larixyl acetate have been proposed to function as rather TRPC6-specific inhibitors. In this study it is shown that both compounds, in addition to inhibiting TRPC6-induced signaling, completely abolished pregnenolone sulfate-mediated signaling via TRPM3 channels. Thus, SAR 7334 and larixyl acetate are not TRPC6-specific inhibitors.


Assuntos
Canal de Cátion TRPC6/antagonistas & inibidores , Canal de Cátion TRPC6/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Bloqueadores dos Canais de Cálcio/farmacologia , Células HEK293 , Humanos , Floroglucinol/análogos & derivados , Floroglucinol/farmacologia , Pregnenolona/farmacologia , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato , Canais de Cátion TRPM/antagonistas & inibidores , Terpenos/farmacologia , Fator de Transcrição AP-1/efeitos dos fármacos
9.
Metallomics ; 12(11): 1735-1747, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33030499

RESUMO

Zinc, a trace element, is necessary for the correct structure and function of many proteins. Therefore, Zn2+ has to be taken up by the cells, using specific Zn2+ transporters or Ca2+ channels. In this study, we have focused on two Ca2+ channels, the L-type voltage-gated Cav1.2 channel and the transient receptor potential channel TRPM3. Stimulation of either channel induces an intracellular signaling cascade leading to the activation of the transcription factor AP-1. The influx of Ca2+ ions into the cytoplasm is essential for this activity. We asked whether extracellular Zn2+ ions affect Cav1.2 or TRPM3-induced gene transcription following stimulation of the channels. The results show that extracellular Zn2+ ions reduced the activation of AP-1 by more than 80% following stimulation of either voltage-gated Cav1.2 channels or TRPM3 channels. Experiments performed with cells maintained in Ca2+-free medium revealed that Zn2+ ions cannot replace Ca2+ ions in inducing gene transcription via stimulation of Cav1.2 and TRPM3 channels. Re-addition of Ca2+ ions to the cell culture medium, however, restored the ability of these Ca2+ channels to induce a signaling cascade leading to the activation of AP-1. Secretory cells, including neurons and pancreatic ß-cells, release Zn2+ ions during exocytosis. We propose that the released Zn2+ ions function as a negative feedback loop for stimulus-induced exocytosis by inhibiting Ca2+ channel signaling.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Canais de Cátion TRPM/metabolismo , Transcrição Gênica , Zinco/farmacologia , Animais , Células HEK293 , Humanos , Insulinoma/genética , Íons , Proteína Quinase C/metabolismo , Ratos , Transdução de Sinais , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
10.
Biochem Pharmacol ; 170: 113678, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31654626

RESUMO

Transient receptor potential melastatin-8 (TRPM8) channels are activated by cold temperature, menthol and icilin, leading to cold sensation. TRPM8 activation is connected with various diseases, indicating that a specific pharmacological antagonist, allowing nongenetic channel suppression, would be a valuable tool for therapy and basic research. Here, we assessed the biological activity and specificity of various TRPM8 inhibitors following stimulation of TRPM8 channels with either icilin or menthol. Recently, we showed that icilin strikingly upregulates the transcriptional activity of AP-1. By measuring AP-1 activity, we assessed which compound interrupted the TRPM8-induced intracellular signaling cascade from the plasma membrane to the nucleus. We tested the specificity of various TRPM8 inhibitors by analyzing AP-1 activation following stimulation of TRPM3 and TRPV1 channels, L-type voltage-gated Ca2+ channels, and Gαq-coupled receptors, either in the presence or absence of a particular TRPM8 inhibitor. The results show that the TRPM8 inhibitors BCTC, RQ-00203078, TC-1 2014, 2-APB, and clotrimazole blocked TRPM8-mediated activation of AP-1. However, only the compound RQ-00203078 showed TRPM8-specificity, while the other compounds function as broad-spectrum Ca2+ channel inhibitors. In addition, we show that progesterone interfered with TRPM8-induced activation of AP-1, as previously shown for TRPM3 and TRPC6 channels. TRPM8-induced transcriptional activation of AP-1 was additionally blocked by the compound PD98059, indicating that extracellular signal-regulated protein kinase-1/2 is essential to couple TRPM8 stimulation with transcriptional activation of AP-1. Moreover, an influx of Ca2+-ions is essential to induce the intracellular signaling cascade leading to the activation of AP-1.


Assuntos
Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/metabolismo , Transcrição Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Pirazinas/farmacologia , Piridinas/farmacologia , Pirimidinonas/farmacologia , Transcrição Gênica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA