Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 592(7855): 537-540, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33883732

RESUMO

Recent multi-dimensional simulations suggest that high-entropy buoyant plumes help massive stars to explode1,2. Outwardly protruding iron (Fe)-rich fingers of gas in the galactic supernova remnant3,4 Cassiopeia A seem to match this picture. Detecting the signatures of specific elements synthesized in the high-entropy nuclear burning regime (that is, α-rich freeze out) would constitute strong substantiating evidence. Here we report observations of such elements-stable titanium (Ti) and chromium (Cr)-at a confidence level greater than 5 standard deviations in the shocked high-velocity Fe-rich ejecta of Cassiopeia A. We found that the observed Ti/Fe and Cr/Fe mass ratios require α-rich freeze out, providing evidence of the existence of the high-entropy ejecta plumes that boosted the shock wave at explosion. The metal composition of the plumes agrees well with predictions for strongly neutrino-processed proton-rich ejecta2,5,6. These results support the operation of the convective supernova engine via neutrino heating in the supernova that produced Cassiopeia A.

2.
Biochem Biophys Res Commun ; 411(2): 281-6, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21726534

RESUMO

The development of atherosclerotic lesions and abdominal aortic aneurysms involves degradation and loss of extracellular matrix components, such as collagen and elastin. Releases of the elastin cross-links desmosine (DES) and isodesmosine (IDE) may reflect elastin degradation in cardiovascular diseases. This study investigated the production of soluble elastin cross-linking structures by proteinases implicated in arterial diseases. Recombinant MMP-12 and neutrophil elastase liberated DES and IDE as amino acids from insoluble elastin. DES and IDE were also released from insoluble elastin exposed to monocyte/macrophage cell lines or human primary macrophages derived from peripheral blood monocytes. Elastin oxidized by reactive oxygen species (ROS) liberated more unconjugated DES and IDE than did non-oxidized elastin when incubated with MMP-12 or neutrophil elastase. These results support the exploration of free DES and IDE as biomarkers of elastin degradation.


Assuntos
Doenças Cardiovasculares/metabolismo , Desmosina/metabolismo , Elastina/metabolismo , Isodesmosina/metabolismo , Elastase de Leucócito/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular , Humanos , Elastase de Leucócito/química , Elastase de Leucócito/genética , Metaloproteinase 12 da Matriz/química , Metaloproteinase 12 da Matriz/genética , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Science ; 309(5733): 451-3, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15933160

RESUMO

The recent discovery of a hyper-metal-poor (HMP) star, with a metallicity Fe/H smaller than 1/100,000 of the solar ratio, together with one earlier HMP star, has raised a challenging question whether these HMP stars are the actual first-generation, low-mass stars of the universe. We argue that these HMP stars are second-generation stars formed from gases that were chemically enriched by the first-generation supernovae. The key to this solution is the very unusual abundance patterns of these HMP stars and the similarities and differences between them. We can reproduce these abundance features with core-collapse "faint" supernova models that include extensive matter mixing and fallback during explosions.

4.
Nature ; 422(6934): 871-3, 2003 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-12712199

RESUMO

It has been proposed theoretically that the first generation of stars in the Universe (population III) would be as massive as 100 solar masses (100 M(O)), because of inefficient cooling of the precursor gas clouds. Recently, the most iron-deficient (but still carbon-rich) low-mass star--HE0107-5240--was discovered. If this is a population III star that gained its metals (elements heavier than helium) after its formation, it would challenge the theoretical picture of the formation of the first stars. Here we report that the patterns of elemental abundance in HE0107-5240 (and other extremely metal-poor stars) are in good accord with the nucleosynthesis that occurs in stars with masses of 20-130 M(O) when they become supernovae if, during the explosions, the ejecta undergo substantial mixing and fallback to form massive black holes. Such supernovae have been observed. The abundance patterns are not, however, consistent with enrichment by supernovae from stars in the range 130-300 M(O). We accordingly infer that the first-generation supernovae came mostly from explosions of approximately 20-130 M(O) stars; some of these produced iron-poor but carbon- and oxygen-rich ejecta. Low-mass second-generation stars, like HE0107-5240, could form because the carbon and oxygen provided pathways for the gas to cool.


Assuntos
Astronomia , Meio Ambiente Extraterreno/química , Ferro/análise , Metais/análise , Fenômenos Astronômicos , Carbono/análise , Magnésio/análise , Nitrogênio/análise , Oxigênio/análise , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA