Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(18): e2217278120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094148

RESUMO

Endosymbiotic bacteria that live inside the cells of insects are typically only transmitted maternally and can spread by increasing host fitness and/or modifying reproduction in sexual hosts. Transinfections of Wolbachia endosymbionts are now being used to introduce useful phenotypes into sexual host populations, but there has been limited progress on applications using other endosymbionts and in asexual populations. Here, we develop a unique pathway to application in aphids by transferring the endosymbiont Rickettsiella viridis to the major crop pest Myzus persicae. Rickettsiella infection greatly reduced aphid fecundity, decreased heat tolerance, and modified aphid body color, from light to dark green. Despite inducing host fitness costs, Rickettsiella spread rapidly through caged aphid populations via plant-mediated horizontal transmission. The phenotypic effects of Rickettsiella were sensitive to temperature, with spread only occurring at 19 °C and not 25 °C. Body color modification was also lost at high temperatures despite Rickettsiella maintaining a high density. Rickettsiella shows the potential to spread through natural M. persicae populations by horizontal transmission and subsequent vertical transmission. Establishment of Rickettsiella in natural populations could reduce crop damage by modifying population age structure, reducing population growth and providing context-dependent effects on host fitness. Our results highlight the importance of plant-mediated horizontal transmission and interactions with temperature as drivers of endosymbiont spread in asexual insect populations.


Assuntos
Afídeos , Coxiellaceae , Animais , Afídeos/microbiologia , Coxiellaceae/genética , Bactérias , Fenótipo , Reprodução , Simbiose
2.
Environ Microbiol ; 26(10): e16704, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39358981

RESUMO

There is increasing interest in exploring how endosymbionts could be useful in pest control, including in aphids, which can carry a diversity of endosymbionts. Endosymbionts often have a large impact on host traits, and their presence can be self-sustaining. Identifying useful host-endosymbiont combinations for pest control is facilitated by the transfer of specific endosymbionts into target species, particularly if the species lacks the endosymbiont. Here, we complete a comprehensive literature review, which included 56 relevant papers on endosymbiont transfer experiments in aphids, to uncover factors that might influence transfer success. We then report on our own microinjection attempts of diverse facultative endosymbionts from a range of donor species into three agriculturally important aphid species as recipients: the green peach aphid (Myzus persicae), bird cherry-oat aphid (Rhopalosiphum padi), and Russian wheat aphid (Diuraphis noxia). Combining this information, we consider reasons that impact the successful establishment of lines carrying transferred endosymbionts. These include a lack of stability in donors, deleterious effects on host fitness, the absence of plant-based (versus vertical) transmission, high genetic variation in the endosymbiont, and susceptibility of an infection to environmental factors. Taking these factors into account should help in increasing success rates in future introductions.


Assuntos
Afídeos , Simbiose , Afídeos/microbiologia , Afídeos/genética , Animais , Bactérias/genética , Bactérias/classificação
3.
Insect Mol Biol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031957

RESUMO

Evolution of Buchnera-aphid host symbioses is often studied among species at macroevolutionary scales. Investigations within species offer a different perspective about how eco-evolutionary processes shape patterns of genetic variation at microevolutionary scales. Our study leverages new and publicly available whole-genome sequencing data to study Buchnera-aphid host evolution in Myzus persicae, the peach potato aphid, a globally invasive and polyphagous pest. Across 43 different asexual, clonally reproducing isofemale strains, we examined patterns of genomic covariation between Buchnera and their aphid host and considered the distribution of mutations in protein-coding regions of the Buchnera genome. We found Buchnera polymorphisms within aphid strains, suggesting the presence of genetically different Buchnera strains within the same clonal lineage. Genetic distance between pairs of Buchnera samples was positively correlated to genetic distance between their aphid hosts, indicating shared evolutionary histories. However, there was no segregation of genetic variation for both M. persicae and Buchnera with plant host (Brassicaceae and non-tobacco Solanaceae) and no associations between genetic and geographic distance at global or regional spatial scales. Abundance patterns of non-synonymous mutations were similar to synonymous mutations in the Buchnera genome, and both mutation classes had similar site frequency spectra. We hypothesize that a predominance of neutral processes results in the Buchnera of M. persicae to simply 'drift' with the evolutionary trajectory of their aphid hosts. Our study presents a unique microevolutionary characterization of Buchnera-aphid host genomic covariation across multiple aphid clones. This provides a new perspective on the eco-evolutionary processes generating and maintaining polymorphisms in a major pest aphid species and its obligate primary endosymbiont.

4.
Environ Microbiol ; 25(10): 1988-2001, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37286189

RESUMO

There is increasing interest in the use of endosymbionts in pest control, which will benefit from the identification of endosymbionts from potential donor species for transfer to pest species. Here, we screened for endosymbionts in 123 Australian aphid samples across 32 species using 16S DNA metabarcoding. We then developed a qPCR method to validate the metabarcoding data set and to monitor endosymbiont persistence in aphid cultures. Pea aphids (Acyrthosiphon pisum) were frequently coinfected with Rickettsiella and Serratia, and glasshouse potato aphids (Aulacorthum solani) were coinfected with Regiella and Spiroplasma; other secondary endosymbionts detected in samples occurred by themselves. Hamiltonella, Rickettsia and Wolbachia were restricted to a single aphid species, whereas Regiella was found in multiple species. Rickettsiella, Hamiltonella and Serratia were stably maintained in laboratory cultures, although others were lost rapidly. The overall incidence of secondary endosymbionts in Australian samples tended to be lower than recorded from aphids overseas. These results indicate that aphid endosymbionts probably exhibit different levels of infectivity and vertical transmission efficiency across hosts, which may contribute to natural infection patterns. The rapid loss of some endosymbionts in cultures raises questions about factors that maintain them under field conditions, while endosymbionts that persisted in laboratory culture provide candidates for interspecific transfers.


Assuntos
Afídeos , Animais , Afídeos/genética , Afídeos/microbiologia , Simbiose , Austrália , Enterobacteriaceae , Serratia/genética
5.
J Evol Biol ; 36(2): 381-398, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36573922

RESUMO

Genomic data provide valuable insights into pest management issues such as resistance evolution, historical patterns of pest invasions and ongoing population dynamics. We assembled the first reference genome for the redlegged earth mite, Halotydeus destructor (Tucker, 1925), to investigate adaptation to pesticide pressures and demography in its invasive Australian range using whole-genome pool-seq data from regionally distributed populations. Our reference genome comprises 132 autosomal contigs, with a total length of 48.90 Mb. We observed a large complex of ace genes, which has presumably evolved from a long history of organophosphate selection in H. destructor and may contribute towards organophosphate resistance through copy number variation, target-site mutations and structural variants. In the putative ancestral H. destructor ace gene, we identified three target-site mutations (G119S, A201S and F331Y) segregating in organophosphate-resistant populations. Additionally, we identified two new para sodium channel gene mutations (L925I and F1020Y) that may contribute to pyrethroid resistance. Regional structuring observed in population genomic analyses indicates that gene flow in H. destructor does not homogenize populations across large geographic distances. However, our demographic analyses were equivocal on the magnitude of gene flow; the short invasion history of H. destructor makes it difficult to distinguish scenarios of complete isolation vs. ongoing migration. Nonetheless, we identified clear signatures of reduced genetic diversity and smaller inferred effective population sizes in eastern vs. western populations, which is consistent with the stepping-stone invasion pathway of this pest in Australia. These new insights will inform development of diagnostic genetic markers of resistance, further investigation into the multifaceted organophosphate resistance mechanism and predictive modelling of resistance evolution and spread.


Assuntos
Ácaros , Praguicidas , Animais , Austrália , Variações do Número de Cópias de DNA , Ácaros/genética , Organofosfatos , Dinâmica Populacional , Genoma
6.
Bull Entomol Res ; 113(4): 481-496, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37278210

RESUMO

Three polyphagous pest Liriomyza spp. (Diptera: Agromyzidae) have recently invaded Australia and are damaging horticultural crops. Parasitic wasps are recognized as effective natural enemies of leafmining species globally and are expected to become important biocontrol agents in Australia. However, the hymenopteran parasitoid complex of agromyzids in Australia is poorly known and its use hindered due to taxonomic challenges when based on morphological characters. Here, we identified 14 parasitoid species of leafminers based on molecular and morphological data. We linked DNA barcodes (5' end cytochrome c oxidase subunit I (COI) sequences) to five adventive eulophid wasp species (Chrysocharis pubicornis (Zetterstedt), Diglyphus isaea (Walker), Hemiptarsenus varicornis (Girault), Neochrysocharis formosa (Westwood), and Neochrysocharis okazakii Kamijo) and two braconid species (Dacnusa areolaris (Nees) and Opius cinerariae Fischer). We also provide the first DNA barcodes (5' end COI sequences) with linked morphological characters for seven wasp species, with three identified to species level (Closterocerus mirabilis Edwards & La Salle, Trigonogastrella parasitica (Girault), and Zagrammosoma latilineatum Ubaidillah) and four identified to genus (Aprostocetus sp., Asecodes sp., Opius sp. 1, and Opius sp. 2). Phylogenetic analyses suggest C. pubicornis, D. isaea, H. varicornis, and O. cinerariae are likely cryptic species complexes. Neochrysocharis formosa and Aprostocetus sp. specimens were infected with Rickettsia. Five other species (Cl. mirabilis, D. isaea, H. varicornis, Opius sp. 1, and Opius sp. 2) were infected with Wolbachia, while two endosymbionts (Rickettsia and Wolbachia) co-infected N. okazakii. These findings provide background information about the parasitoid fauna expected to help control the leafminers.


Assuntos
Dípteros , Vespas , Animais , Filogenia , Vespas/genética , Dípteros/genética , Austrália , Produtos Agrícolas , DNA
7.
Exp Appl Acarol ; 89(3-4): 379-392, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37000308

RESUMO

Resistance to pesticides is typically identified via laboratory bioassays after field control failures are observed, but the results of such assays are rarely validated through experiments under field conditions. Such validation is particularly important when only a low-to-moderate level of resistance is detected in the laboratory. Here we undertake such a validation for organophosphate resistance in the agricultural pest mite Halotydeus destructor, in which low-to-moderate levels of resistance to organophosphorus pesticides have evolved in Australia. Using data from laboratory bioassays, we show that resistance to the organophosphate chlorpyrifos is higher (around 100-fold) than resistance to another organophosphate, omethoate (around 7-fold). In field trials, both these chemicals were found to effectively control pesticide-susceptible populations of H. destructor. However, when applied to a resistant mite population in the field, the effectiveness of chlorpyrifos was substantially decreased. In contrast, omethoate remained effective when tested alone or as a mixture with chlorpyrifos. We also show that two novel (non-pesticide) treatments, molasses and wood vinegar, are ineffective in controlling H. destructor when sprayed to pasture fields at rates of 4 L/ha. These findings suggest a close link between levels of resistance quantified through laboratory bioassays and the field effectiveness of pesticides; however, in the case of H. destructor, this does not necessarily mean all field populations possessing organophosphate resistance will respond similarly given the potentially complex nature of the underlying resistance mechanism(s).


Assuntos
Clorpirifos , Inseticidas , Ácaros , Praguicidas , Animais , Praguicidas/farmacologia , Compostos Organofosforados/farmacologia , Clorpirifos/farmacologia , Resistência a Inseticidas , Inseticidas/farmacologia
8.
Mol Ecol ; 30(19): 4913-4925, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34309946

RESUMO

Understanding how invasive species respond to novel environments is limited by a lack of sensitivity and throughput in conventional biomonitoring methods. Arthropods in particular are often difficult to monitor due to their small size, rapid lifecycles, and/or visual similarities with co-occurring species. This is true for the agromyzid leafminer fly, Liriomyza sativae, a global pest of vegetable and nursery industries that has recently established in Australia. A robust method based on environmental DNA (eDNA) was developed exploiting traces of DNA left inside "empty" leaf mines, which are straightforward to collect and persist longer in the environment than the fly. This extends the window of possible diagnosis to at least 28 days after a leaf mine becomes empty. The test allowed for visually indistinguishable leafmining damage caused by L. sativae to be genetically differentiated from that of other flies. Field application resulted in the identification of new local plant hosts for L. sativae, including widely distributed weeds and common garden crops, which has important implications for the pest's ability to spread. Moreover, the test confirmed the presence of a previously unknown population of L. sativae on an island in the Torres Strait. The developed eDNA method is likely to become an important tool for L. sativae and other leafmining species of biosecurity significance, which, historically, have been difficult to detect, diagnose and monitor. More generally, eDNA is emerging as a highly sensitive and labour-efficient surveillance tool for difficult to survey species to improve outcomes for agricultural industries, global health, and the environment.


Assuntos
DNA Ambiental , Dípteros , Animais , Monitoramento Biológico , Produtos Agrícolas , Dípteros/genética , Espécies Introduzidas
9.
Pestic Biochem Physiol ; 159: 9-16, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31400789

RESUMO

An L1024F substitution in the para gene, which encodes a subunit of the voltage-gated sodium channel, has been implicated in pyrethroid resistance in a mite pest, Halotydeus destructor, which attacks rape and other grain crops. A high-resolution melt (HRM) genotyping assay was developed for testing the relative pyrethroid susceptibility of different para genotypes and for high-throughput field screening of resistant alleles. The L1024F mutation was found to be incompletely recessive in phenotypic laboratory bioassays with the pyrethroid pesticide, bifenthrin. While the resistance ratio of heterozygotes (RS) to susceptible homozygotes (SS) was <6 in 24 h bioassays, the resistant homozygotes (RR) (with a resistance ratio > 200,000) survived the recommended field rate of bifenthrin (100 mgL-1). HRM genotyping of mites from field populations across Australia indicated the presence of resistant alleles in Western Australia and South Australia, but not in Victoria and New South Wales. The assay developed will be useful for routine screening of pyrethroid resistance, and the dominance relationships established here point to useful resistance management strategies involving the maintenance of reservoirs of susceptible mites to dilute resistant homozygotes in a population.


Assuntos
Inseticidas/farmacologia , Ácaros/efeitos dos fármacos , Piretrinas/farmacologia , Animais , Genótipo , Heterozigoto , Homozigoto , Resistência a Inseticidas/genética , Programas de Rastreamento , Ácaros/genética
10.
Exp Appl Acarol ; 79(3-4): 345-357, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31707515

RESUMO

The redlegged earth mite (Halotydeus destructor) is an important agricultural pest in Australia, with a wide range of plant hosts. Halotydeus destructor has developed resistance to pyrethroid and organophosphorus insecticides as a consequence of the widespread use of these chemicals by farmers. Neonicotinoids are one of the few remaining insecticide classes registered against H. destructor in which resistance has not been detected, although there have been occasional reports of control difficulties experienced in the field. There is currently no reliable way to accurately test the response of H. destructor (or indeed any mite species) to neonicotinoid insecticides. Here, we developed a new bioassay to assess the response of mites against the neonicotinoid imidacloprid. The method provided consistent results and showed no variation when used by different operators. We generated base-line sensitivity data for imidacloprid across a number of field-collected populations of H. destructor. This is important for future monitoring of mite responses given the considerable selection pressure now being exerted across large areas of the Australian farming landscape through the widespread use of neonicotinoid seed treatments.


Assuntos
Resistência a Inseticidas , Inseticidas , Ácaros , Neonicotinoides , Acaricidas , Animais , Austrália , Nitrocompostos , Compostos Organofosforados , Controle de Pragas , Piretrinas
11.
Pestic Biochem Physiol ; 144: 83-90, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29463413

RESUMO

Resistance mechanisms are typically uncovered by identifying sequence variation in known candidate genes, however this strategy can be problematic for species with no reference data in known relatives. Here we take a genomic approach to identify resistance to pyrethroids in the redlegged earth mite, Halotydeus destructor, a member of the Penthalidae family of mites that are virtually uncharacterized genetically. Based on shallow genome sequencing followed by a genome assembly, we first identified contigs of the H. destructor parasodium channel gene. By linking variation in this gene to known resistant phenotypes, we located a single nucleotide polymorphism in resistant mites. This polymorphism results in a leucine (L) to phenylalanine (F) amino acid substitution in the II6 region (predicted) of the gene (L1024F). This novel mutation has not previously been linked to pyrethroid resistance, although other polymorphisms have been identified in the two-spotted spider mite, Tetranychus urticae at the same locus (L1024V). The sequencing approach was successful in generating a candidate polymorphism that was then validated using laboratory bioassays and field surveys. A high throughput Illumina-based sequencing diagnostic was developed to rapidly assess resistance allele frequencies in pools of mites sourced from hundreds of populations across Australia. Resistance was confirmed to be widespread in the southern wheatbelt region of Western Australia. Two different resistance mutations were identified in field populations, both resulting in the same amino acid substitution. The frequency and distribution of resistance amplicon haplotypes suggests at least two, and probably more independent origins of resistance.


Assuntos
Ácaros e Carrapatos/genética , Genes de Insetos , Resistência a Inseticidas/genética , Mutação , Piretrinas/farmacologia , Substituição de Aminoácidos , Animais , Austrália , Frequência do Gene , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Leucina/química , Fenilalanina/química , Polimorfismo de Nucleotídeo Único
12.
Exp Appl Acarol ; 65(3): 259-76, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25528452

RESUMO

Integrated pest management in Australian winter grain crops is challenging, partly because the timing and severity of pest outbreaks cannot currently be predicted, and this often results in prophylactic applications of broad spectrum pesticides. We developed a simple model to predict the median emergence in autumn of pest populations of the redlegged earth mite, Halotydeus destructor, a major field crop and pasture pest in southern Australia. Previous data and observations suggest that rainfall and temperature are critical for post-diapause egg hatch. We evaluated seven models that combined rainfall and temperature thresholds derived using three approaches against previously recorded hatch dates and 2013 field records. The performance of the models varied between Western Australia and south-eastern Australian States. In Western Australia, the key attributes of the best fitting model were more than 5 mm rain followed by mean day temperatures of below 20.5 °C for 10 days. In south-eastern Australia, the most effective model involved a temperature threshold reduced to 16 °C. These regional differences may reflect adaptation of H. destructor in south-eastern Australia to varied and uncertain temperature and rainfall regimes of late summer and autumn, relative to the hot and dry Mediterranean-type climate in Western Australia. Field sampling in 2013 revealed a spread of early hatch dates in isolated patches of habitat, ahead of predicted paddock scale hatchings. These regional models should assist in monitoring and subsequent management of H. destructor at the paddock scale.


Assuntos
Ácaros/fisiologia , Modelos Teóricos , Óvulo/fisiologia , Animais , Chuva , Temperatura
13.
J Econ Entomol ; 107(6): 2204-12, 2014 12.
Artigo em Inglês | MEDLINE | ID: mdl-26470087

RESUMO

Development of sampling techniques to effectively estimate invertebrate densities in the field is essential for effective implementation of pest control programs, particularly when making informed spray decisions around economic thresholds. In this article, we investigated the influence of several factors to devise a sampling strategy to estimate Halotydeus destructor Tucker densities in a canola paddock. Direct visual counts were found to be the most suitable approach for estimating mite numbers, with higher densities detected than the vacuum sampling method. Visual assessments were impacted by the operator, sampling date, and time of day. However, with the exception of operator (more experienced operator detected higher numbers of mites), no obvious trends were detected. No patterns were found between H. destructor numbers and ambient temperature, relative humidity, wind speed, cloud cover, or soil surface conditions, indicating that these factors may not be of high importance when sampling mites during autumn and winter months. We show further support for an aggregated distribution of H. destructor within paddocks, indicating that a stratified random sampling program is likely to be most appropriate. Together, these findings provide important guidelines for Australian growers around the ability to effectively and accurately estimate H. destructor densities.


Assuntos
Brassica rapa , Proteção de Cultivos/métodos , Ácaros , Solo/parasitologia , Animais , Densidade Demográfica
14.
J Econ Entomol ; 107(4): 1626-38, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25195456

RESUMO

The green peach aphid, Myzus persicae (Sulzer), is a serious pest throughout the world, attacking a broad range of crop plants across numerous agricultural industries. This species has a high propensity to develop chemical resistance, and has the unenviable title of having resistance to more insecticides than any other insect species. An extensive survey of field populations was undertaken across Australia, and showed widespread and high levels of resistance to carbamates and synthetic pyrethroids in M. persicae. Moderate levels of resistance to organophosphates were also observed in many populations, while there is new evidence of resistance developing to neonicotinoids. Isofemale (clonal) lines of M. persicae were generated and subsequently tested across a range of insecticides; individual genetic clones were found to contain resistance to multiple chemical classes. Resistance genotyping of these aphids were consistent with published literature of known resistant mechanisms. The high and widespread levels of resistance identified within Australia are concerning. Resistance in M. persicae has spread quickly across Australia, and thus farmers are likely to have fewer chemical control options in the future. There is a need to develop resistance management strategies that rotate insecticides, spray insecticides only when economically necessary, and incorporate nonchemical control options.


Assuntos
Afídeos , Resistência a Inseticidas , Inseticidas , Anabasina , Animais , Austrália , Carbamatos , Feminino , Organofosfatos , Piretrinas
15.
Pest Manag Sci ; 80(3): 1338-1347, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37915298

RESUMO

BACKGROUND: The bluegreen aphid (Acyrthosiphon kondoi) is a worldwide pest of alfalfa, pulses, and other legume crops. An overreliance on insecticides to control A. kondoi has potentially placed populations under selection pressure favouring resistant phenotypes, but to date, there have been no documented cases of insecticide resistance. Recently, Australian growers began reporting that conventional insecticides were failing to adequately control A. kondoi populations, prompting this laboratory-based investigation into whether these populations have evolved resistance. RESULTS: We discovered four A. kondoi populations with moderate resistance (10-40-fold) to three different insecticide groups: organophosphates, carbamates and pyrethroids. However, A. kondoi populations showed no resistance to the butenolide, flupyradifurone. We were unable to identify general metabolic mechanisms using synergist assays (cytochromes P450, glutathione S-transferases, or esterases), indicating that further detailed molecular investigations to characterise the putative resistance mechanism are needed. CONCLUSION: Insecticide-resistant A. kondoi present an emerging challenge to Australian agriculture. Growers require new tools and updated strategies, including access to newer chemistries, to alleviate their reliance on the few insecticides currently registered against A. kondoi. The implications of insecticide resistant A. kondoi for future management, the potential mechanisms of resistance, and future research priorities are discussed. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Afídeos , Inseticidas , Animais , Inseticidas/farmacologia , Resistência a Inseticidas , Austrália , Medicago sativa
16.
Pest Manag Sci ; 80(2): 866-873, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37816144

RESUMO

BACKGROUND: The green peach aphid, Myzus persicae (Sulzer), is one of the most economically important crop pests worldwide. Insecticide resistance in this pest was first detected over 60 years ago, with resistance in M. persicae now spanning over 80 active ingredients. Sulfoxaflor is a relatively new insecticide that is primarily used to control sap-feeding insects. In 2018 resistance to sulfoxaflor was discovered in field populations of M. persicae in Australia. This study aimed to determine the current distribution and phenotypic levels of sulfoxaflor resistance in Australian clones of M. persicae and to investigate how these patterns relate to clonal type. RESULTS: For the first time, we show there is low-level resistance (8-26-fold) distributed across Australia, with resistance being detected in aphids collected from approximately 20% of all M. persicae collected and screened. Furthermore, this study shows sulfoxaflor resistance is found in two M. persicae haplotypes, providing evidence that there have been multiple independent evolutionary events which have given rise to sulfoxaflor resistance in this species. CONCLUSION: These findings have important implications for the chemical control of M. persicae in Australia, especially when considering the broader genetic background of these aphids which are known to harbour a number of other insecticide resistance mechanisms. We recommend continuous monitoring of sulfoxaflor resistance in field populations of M. persicae (in Australia and elsewhere) and further research into the underlying genetic mechanisms conferring resistance to sulfoxaflor in both clonal haplotypes. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Afídeos , Inseticidas , Piridinas , Animais , Afídeos/genética , Austrália , Inseticidas/farmacologia , Compostos de Enxofre/farmacologia , Resistência a Inseticidas/genética
17.
J Econ Entomol ; 117(1): 102-117, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38142133

RESUMO

The green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae), is a major pest of brassica plants, with the ability to transmit > 100 viruses. Although the adoption of Integrated Pest Management is increasing, chemical treatment remains the predominant method used to control M. persicae globally. Insecticide seed treatments, typically with neonicotinoid active ingredients, have become commonplace in canola crops, and are viewed as a "softer" alternative to foliar sprays but may nevertheless impact natural enemies of M. persicae. In this study, the effects of canola seed treatments, containing imidacloprid, thiamethoxam, and a mixture of thiamethoxam + lambda-cyhalothrin, were investigated on the parasitoid wasp, Aphidius colemani Viereck (Hymenoptera: Braconidae) and the green lacewing, Mallada signatus (Schneider) (Neuroptera: Chrysopidae), both important natural enemies of M. persicae. Laboratory trials were undertaken using whole plants, with lethal and sublethal effects assessed by measuring several traits. Compared with untreated plants, more aphid mummies were produced and more A. colemani were reared on plants treated with thiamethoxam + lambda-cyhalothrin and more aphid mummies were produced on imidacloprid plants. Imidacloprid reduced the time A. colemani spent searching for M. persicae and thiamethoxam reduced its cleaning time. However, after A. colemani were removed from treated plants, there were no such effects observed, suggesting these impacts were relatively short-lived. We found no significant effects of seed treatments on M. signatus. These results point to the complexity of ecotoxicology studies involving multiple trophic levels and indicate that seed treatments may have variable impacts on key fitness traits of natural enemies.


Assuntos
Afídeos , Inseticidas , Neonicotinoides , Nitrilas , Nitrocompostos , Piretrinas , Vespas , Animais , Inseticidas/farmacologia , Tiametoxam , Comportamento Predatório , Controle Biológico de Vetores/métodos , Sementes
18.
Sci Rep ; 14(1): 16939, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043780

RESUMO

As climate change continues to modify temperature and rainfall patterns, risks from pests and diseases may vary as shifting temperature and moisture conditions affect the life history, activity, and distribution of invertebrates and diseases. The potential consequences of changing climate on pest management strategies must be understood for control measures to adapt to new environmental conditions. The redlegged earth mite (RLEM; Halotydeus destructor [Tucker]) is a major economic pest that attacks pastures and grain crops across southern Australia and is typically controlled by pesticides. TIMERITE® is a management strategy that relies on estimating the optimal timing (the TIMERITE® date) for effective chemical control of RLEM populations in spring. In this study, we assessed the efficacy of control at the TIMERITE® date from 1990 to 2020 across southern Australia using a simulation approach that incorporates historical climatic data and field experimental data on life history, seasonal abundance, and population level pesticide responses. We demonstrate that moisture and temperature conditions affect the life history of RLEM and that changes in the past three decades have gradually diminished the efficacy of the TIMERITE® strategy. Furthermore, we show that by incorporating improved climatic data into predictions and shifting the timing of control to earlier in the year, control outcomes can be improved and are more stable across changing climates. This research emphasises the importance of accounting for dynamic environmental responses when developing and implementing pest management strategies to ensure their long-term effectiveness. Suggested modifications to estimating the TIMERITE® date will help farmers maintain RLEM control outcomes amidst increasingly variable climatic conditions.


Assuntos
Mudança Climática , Ácaros , Controle de Pragas , Animais , Controle de Pragas/métodos , Austrália , Temperatura , Estações do Ano , Praguicidas
19.
J Econ Entomol ; 117(4): 1377-1384, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38935037

RESUMO

Aphids (Hemiptera: Aphidoidea) are economically important crop pests worldwide. Because of growing issues with insecticide resistance and environmental contamination by insecticides, alternate methods are being explored to provide aphid control. Aphids contain endosymbiotic bacteria that affect host fitness and could be targeted as potential biocontrol agents, but such novel strategies should not impact the effectiveness of traditional chemical control. In this work, we used a novel endosymbiont transinfection to examine the impact of the endosymbiont Rickettsiella viridis on chemical tolerance in 3 important agricultural pest species of aphid: Myzus persicae (Sulzer) (Hemiptera: Aphididae), Rhopalosiphum padi (Linnaeus) (Hemiptera: Aphididae), and Diuraphis noxia (Mordvilko ex Kurdjumov) (Hemiptera: Aphididae). We tested tolerance to the commonly used insecticides alpha-cypermethrin, bifenthrin, and pirimicarb using a leaf-dip bioassay. We found no observed effect of this novel endosymbiont transinfection on chemical tolerance, suggesting that the strain of Rickettsiella tested here could be used as a biocontrol agent without affecting sensitivity to insecticides. This may allow Rickettsiella transinfections to be used in combination with chemical applications for pest control. The impacts of other endosymbionts on insecticide tolerance should be considered, along with tests on multiple aphid clones with different inherent levels of chemical tolerance.


Assuntos
Afídeos , Inseticidas , Simbiose , Animais , Afídeos/microbiologia , Inseticidas/farmacologia , Resistência a Inseticidas , Rhizobiaceae/fisiologia
20.
Sci Total Environ ; 930: 172521, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641095

RESUMO

Agricultural practitioners, researchers and policymakers are increasingly advocating for integrated pest management (IPM) to reduce pesticide use while preserving crop productivity and profitability. Using selective pesticides, putatively designed to act on pests while minimising impacts on off-target organisms, is one such option - yet evidence of whether these chemicals control pests without adversely affecting natural enemies and other beneficial species (henceforth beneficials) remains scarce. At present, the selection of pesticides compatible with IPM often considers a single (or a limited number of) widely distributed beneficial species, without considering undesired effects on co-occurring beneficials. In this study, we conducted standardised laboratory bioassays to assess the acute toxicity effects of 20 chemicals on 15 beneficial species at multiple exposure timepoints, with the specific aims to: (1) identify common and diverging patterns in acute toxicity responses of tested beneficials; (2) determine if the effect of pesticides on beetles, wasps and mites is consistent across species within these groups; and (3) assess the impact of mortality assessment timepoints on International Organisation for Biological Control (IOBC) toxicity classifications. Our work demonstrates that in most cases, chemical toxicities cannot be generalised across a range of beneficial insects and mites providing biological control, a finding that was found even when comparing impacts among closely related species of beetles, wasps and mites. Additionally, we show that toxicity impacts increase with exposure length, pointing to limitations of IOBC protocols. This work challenges the notion that chemical toxicities can be adequately tested on a limited number of 'representative' species; instead, it highlights the need for careful consideration and testing on a range of regionally and seasonally relevant beneficial species.


Assuntos
Agricultura , Praguicidas , Animais , Praguicidas/toxicidade , Agricultura/métodos , Ácaros/efeitos dos fármacos , Testes de Toxicidade Aguda , Vespas/efeitos dos fármacos , Controle de Pragas/métodos , Besouros/efeitos dos fármacos , Controle Biológico de Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA