RESUMO
Nuclear receptor action is mediated in part by the nuclear receptor corepressor 1 (NCOR1) and the silencing mediator of retinoic acid and thyroid hormone receptor (SMRT). NCOR1 and SMRT regulate metabolic pathways that govern body mass, insulin sensitivity, and energy expenditure, representing an understudied area in the realm of metabolic health and disease. Previously, we found that NCOR1 and SMRT are essential for maintaining metabolic homeostasis and their knockout (KO) leads to rapid weight loss and hypoglycemia, which is not survivable. Because of a potential defect in glucose absorption, we sought to determine the role of NCOR1 and SMRT specifically in intestinal epithelial cells (IECs). We used a postnatal strategy to disrupt NCOR1 and SMRT throughout IECs in adult mice. These mice were characterized metabolically and underwent metabolic phenotyping, body composition analysis, and glucose tolerance testing. Jejunal IECs were isolated and profiled by bulk RNA sequencing. We found that the postnatal KO of NCOR1 and SMRT from IECs leads to rapid weight loss and hypoglycemia with a significant reduction in survival. This was accompanied by alterations in glucose metabolism and activation of fatty acid oxidation in IECs. Metabolic phenotyping confirmed a reduction in body mass driven by a loss of body fat without altered food intake. This appeared to be mediated by a reduction of key intestinal carbohydrate transporters, including SGLT1, GLUT2, and GLUT5. Intestinal NCOR1 and SMRT act in tandem to regulate glucose levels and body weight. This in part may be mediated by regulation of intestinal carbohydrate transporters.
Assuntos
Mucosa Intestinal , Camundongos Knockout , Correpressor 1 de Receptor Nuclear , Correpressor 2 de Receptor Nuclear , Animais , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 1 de Receptor Nuclear/genética , Correpressor 2 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/genética , Camundongos , Mucosa Intestinal/metabolismo , Glucose/metabolismo , Masculino , Metabolismo dos Carboidratos/genética , Camundongos Endogâmicos C57BL , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 1 de Glucose-Sódio/genética , Transporte Biológico , Feminino , Metabolismo Energético , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 2/genéticaRESUMO
OBJECTIVE: Thyroid hormone (TH) action is mediated by thyroid hormone receptor (THR) isoforms. While THRß1 is likely the main isoform expressed in liver, its role in human hepatocytes is not fully understood. METHODS: To elucidate the role of THRß1 action in human hepatocytes we used CRISPR/Cas9 editing to knock out THRß1 in induced pluripotent stem cells (iPSC). Following directed differentiation to the hepatic lineage, iPSC-derived hepatocytes were then interrogated to determine the role of THRß1 in ligand-independent and -dependent functions. RESULTS: We found that the loss of THRß1 promoted alterations in proliferation rate and metabolic pathways regulated by T3, including gluconeogenesis, lipid oxidation, fatty acid synthesis, and fatty acid uptake. We observed that key genes involved in liver metabolism are regulated through both T3 ligand-dependent and -independent THRß1 signaling mechanisms. Finally, we demonstrate that following THRß1 knockout, several key metabolic genes remain T3 responsive suggesting they are THRα targets. CONCLUSIONS: These results highlight that iPSC-derived hepatocytes are an effective platform to study mechanisms regulating TH signaling in human hepatocytes.
RESUMO
Background: The human adrenal cortex undergoes several rapid remodeling steps during its lifetime. In rodents, similar remodeling occurs postnatally in the "X-zone" layer through unknown mechanisms. Furthermore, little is known regarding the impact of thyroid hormone (TH) on adrenal glands in humans. Methods: To investigate the impact of TH on adrenal pathophysiology, we created two genetic murine models mimicking human nonautoimmune hypothyroidism and hyperthyroidism. Moreover, we analyzed serum thyrotropin (TSH) and steroid hormone concentrations in patients diagnosed with congenital hypothyroidism and premature adrenarche (PA). Results: We found that TH receptor beta-mediated hypertrophy of the X-zone significantly elevated the adrenal weights of hyperthyroid women. In the hypothyroid model, the X-zone was poorly developed in both sexes. Moreover, large reciprocal changes in the expression levels of genes that regulate adrenal cortical function were observed with both models. Unexpectedly, up- and downregulation of several genes involved in catecholamine synthesis were detected in the adrenal glands of the hypothyroid and hyperthyroid models, respectively. Furthermore, TSH and adrenal steroid concentrations correlated positively in pediatric patients with congenital hypothyroidism and PA. Conclusions: Our results revealed that congenital hypothyroidism and hyperthyroidism functionally affect adrenal gland development and related steroidogenic activity, as well as the adrenal medulla.
Assuntos
Hipotireoidismo Congênito , Hipertireoidismo , Animais , Criança , Hipotireoidismo Congênito/genética , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Hormônios Tireóideos , TireotropinaRESUMO
Stem cell-based therapies to reconstitute in vivo organ function hold great promise for future clinical applications to a variety of diseases. Hypothyroidism resulting from congenital lack of functional thyrocytes, surgical tissue removal, or gland ablation, represents a particularly attractive endocrine disease target that may be conceivably cured by transplantation of long-lived functional thyroid progenitors or mature follicular epithelial cells, provided a source of autologous cells can be generated and a variety of technical and biological challenges can be surmounted. Here we review the emerging literature indicating that thyroid follicular epithelial cells can now be engineered in vitro from the pluripotent stem cells (PSCs) of mice, normal humans, or patients with congenital hypothyroidism. We review the in vivo embryonic development of the thyroid gland and explain how emerging discoveries in developmental biology have been utilized as a roadmap for driving PSCs, which resemble cells of the early embryo, into mature functional thyroid follicles in vitro. Finally, we discuss the bioengineering, biological, and clinical hurdles that now need to be addressed if the goals of life-long cure of hypothyroidism through cell- and/or gene-based therapies are to be attained.
Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes/citologia , Medicina Regenerativa , Transplante de Células-Tronco , Doenças da Glândula Tireoide/terapia , Células Epiteliais da Tireoide/citologia , Animais , HumanosRESUMO
Background: Radioiodine refractory dedifferentiated thyroid cancer is a major clinical challenge. Anaplastic lymphoma kinase (ALK) mutations with increased ALK activity, especially fusion genes, have been suggested to promote thyroid carcinogenesis, leading to development of poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid carcinoma. To determine the oncogenic potential of increased ALK activity in thyroid carcinogenesis in vivo, we studied mice with thyrocyte-specific expression of a constitutively active ALK mutant. Methods: Mice carrying a Cre-activated allele of a constitutively active ALK mutant (F1174L) were crossed with mice expressing tamoxifen-inducible Cre recombinase (CreERT2) under the control of the thyroglobulin (Tg) gene promoter to achieve thyrocyte-specific expression of the ALK mutant (ALKF1174L mice). Survival, thyroid hormone serum concentration, and tumor development were recorded. Thyroids and lungs were studied histologically. To maintain euthyroidism despite dedifferentiation of the thyroid, a cohort was substituted with levothyroxine (LT4) through drinking water. Results: ALKF1174L mice developed massively enlarged thyroids, which showed an early loss of normal follicular architecture 12 weeks after tamoxifen injection. A significant decrease in Tg and Nkx-2.1 expression as well as impaired thyroid hormone synthesis confirmed dedifferentiation. Histologically, the mice developed a carcinoma resembling human PDTC with a predominantly trabecular/solid growth pattern and an increased mitotic rate. The tumors showed extrathyroidal extension into the surrounding strap muscles and developed lung metastases. Median survival of ALKF1174L mice was significantly reduced to five months after tamoxifen injection. Reduced Tg expression and loss of follicular structure led to hypothyroidism with elevated thyrotropin (TSH). To test whether TSH stimulation played a role in thyroid carcinogenesis, we kept ALKF1174L mice euthyroid by LT4 substitution. These mice developed PDTC with identical histological features compared with hypothyroid mice, demonstrating that PDTC development was due to increased ALK activity and not dependent on TSH stimulation. Conclusion: Expression of a constitutively activated ALK mutant in thyroids of mice leads to development of metastasizing thyroid cancer resembling human PDTC. These results demonstrate in vivo that increased ALK activity is a driver mechanism in thyroid carcinogenesis.