Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 340(Pt 2): 122765, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37913975

RESUMO

Persistent organic pollutants (POPs) are lipophilic compounds that bioaccumulate in animals and biomagnify within food webs. Many POPs are endocrine disrupting compounds that impact vertebrate development. POPs accumulate in the Arctic via global distillation and thereby impact high trophic level vertebrates as well as people who live a subsistence lifestyle. The Arctic also contains thousands of point sources of pollution, such as formerly used defense (FUD) sites. Sivuqaq (St. Lawrence Island), Alaska was used by the U.S. military during the Cold War and FUD sites on the island remain point sources of POP contamination. We examined the effects of POP exposure on ninespine stickleback (Pungitius pungitius) collected from Troutman Lake in the village of Gambell as a model for human exposure and disease. During the Cold War, Troutman Lake was used as a dump site by the U.S. military. We found that PCB concentrations in stickleback exceeded the U.S. Environmental Protection Agency's guideline for unlimited consumption despite these fish being low trophic level organisms. We examined effects at three levels of biological organization: gene expression, endocrinology, and histomorphology. We found that ninespine stickleback from Troutman Lake exhibited suppressed gonadal development compared to threespine stickleback (Gasterosteus aculeatus) studied elsewhere. Troutman Lake stickleback also displayed two distinct hepatic phenotypes, one with lipid accumulation and one with glycogen-type vacuolation. We compared the transcriptomic profiles of these liver phenotypes using RNA sequencing and found significant upregulation of genes involved in ribosomal and metabolic pathways in the lipid accumulation group. Additionally, stickleback displaying liver lipid accumulation had significantly fewer thyroid follicles than the vacuolated phenotype. Our study and previous work highlight health concerns for people and wildlife due to pollution hotspots in the Arctic, and the need for health-protective remediation.


Assuntos
Poluentes Ambientais , Smegmamorpha , Animais , Humanos , Alaska , Poluentes Orgânicos Persistentes/metabolismo , Lagos , Peixes/genética , Smegmamorpha/metabolismo , Poluentes Ambientais/metabolismo , Expressão Gênica , Lipídeos
2.
Sci Total Environ ; 892: 164566, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37270011

RESUMO

Arctic communities are disproportionately exposed to pollutants from sources including global atmospheric transport and formerly used defense sites (FUDS). The effects of climate change and increasing development in the Arctic have the potential to exacerbate this problem. Yupik People of Sivuqaq, or St Lawrence Island, Alaska are one such community with documented exposures to pollutants from FUDS, and their traditional lipid-rich foods such as blubber and rendered oils of marine mammals. Troutman Lake, adjacent to the Yupik community of Gambell, Alaska, was used as a disposal site during the decommission of the adjacent FUDS, leading to community concern about exposure to military pollution and intrusion from historic local dump sites. In collaboration with a local community group, this study utilized passive sampling devices deployed in Troutman Lake. Air, water and sediment deployed samplers were analyzed for unsubstituted and alkylated polycyclic aromatic hydrocarbons (PAHs), brominated and organophosphate flame retardants and polychlorinated biphenyls (PCBs). PAH concentrations were low and comparable to other remote/rural locations. PAHs were generally in deposition from the overlying atmosphere into Troutman Lake. Of the flame retardants, brominated diphenyl ether-47 was detected in all surface water samplers while triphenyl phosphate was detected in all environmental compartments. Both were at concentrations equivalent or lower than other remote locations. Of particular interest, we measured higher atmospheric concentrations of tris(2-chloroethyl) phosphate (TCEP) (0.75-2.8 ng/m3) than previously reported in the literature for remote Arctic sites (<0.017-0.56 ng/m3). TCEP was found to be in deposition to Troutman Lake at magnitudes from 290 to 1300 ng/m2/day. No PCBs were detected in this study. Our findings demonstrate the relevance of both modern and legacy chemicals from local and global sources. These results help us to understand the fate of anthropogenic contaminants in dynamic Arctic systems providing valuable data for communities, policy makers and scientists.


Assuntos
Caniformia , Poluentes Ambientais , Retardadores de Chama , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Humanos , Animais , Poluentes Orgânicos Persistentes , Retardadores de Chama/análise , Poluentes Químicos da Água/análise , Poluentes Ambientais/análise , Atmosfera , Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA