Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Pharm Bull (Tokyo) ; 62(5): 422-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24789924

RESUMO

Collagen is a promising biomaterial for drug delivery due to advantages including high biocompatibility and biodegradable property. However, transforming collagen into solid nanoparticles is difficult, although the solid dosage form is advantageous for some administration routes including pulmonary and oral drug delivery. In this study, collagen solid nanoparticles are prepared in one-step using electrospray deposition under ambient temperature and pressure conditions. Although collagen molecules formed micron-sized aggregates in acetic acid solutions spontaneously, electrospraying the collagen solutions resulted in formation of nanofibers. Solid nanoparticles were obtained by increasing conductivity of the solution and/or inducing structural perturbation of the collagen molecules using salts. The ability of solid collagen particles as a drug carrier was demonstrated by incorporating theophylline as a model drug using a coaxial spray technique. Release of theophylline was controlled by cross-linking collagen molecules. Electrospray deposition was proved to be a powerful method for producing solid collagen nanoparticles for drug delivery.


Assuntos
Colágeno/síntese química , Nanopartículas/química , Aerossóis/síntese química , Aerossóis/química , Colágeno/química , Eletrônica
2.
Front Bioeng Biotechnol ; 10: 849441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480968

RESUMO

"Thamira parpam" (TP), a copper-based herbometallic oxide (copper (II) oxide) nanodrug has been used in Siddha medicine for centuries because of its anti-ulcerogenic property. However, the physicochemical properties and in vivo toxicity of TP still remain elusive. Rigorous clinical translation requires deciphering these vital properties. We have synthesized TP following a gold standard protocol in the traditional Siddha methodology. We assessed the size, phase, elemental constituents, and thermal stability of TP by SEM and TEM, XRD, EPR, and EDAX analyses, respectively. The results depicted the conversion of metallic copper into copper (II) oxide in the final stages of TP preparation and exhibited nanodimensions ranging between 10 and 50 nm. The XPS spectra revealed the presence of oxygen-deficient state and a carbonaceous coating was found on the surface of TP using TEM analysis. In vivo safety was studied in rat toxicity models by adopting OECD guidelines. Body weight changes, feed, and water intake were unaltered upon TP administration. Hematological, biochemical profiling, and histopathological findings also suggested its nontoxic nature with no abnormalities in major organs and its functions. Interestingly, we found that the metal toxicity could have been subdued because of the carbonaceous coating around the nanoparticle copper (II) oxide, confirming that the drug is safe at a low dose. Overall, our study has enlightened the safety of TP supporting the use of Siddha formulations.

3.
Heliyon ; 6(8): e04563, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32793825

RESUMO

Chromium-catechin complex was synthesized by reacting [Cr(H2O)6]2+ (hexa-aqua) with catechin as a ligand. Toxicity studies were carried out for the complex using bacterial models for safer application of this complex in the future as a drug. Chromium-catechin complex was characterized using ESI Mass spectrometry, electronic spectroscopy, FT-IR spectroscopy and cyclic voltammetry. The complex was found mildly inhibitory towards B. subtilis with the mode of action being oxidative damage, targeting cell membrane. The complex was supportive towards E. coli, which was evident from the growth profile and inhibition studies. SEM analysis supported the results of membrane integrity studies, where the bacterial liposomes upon treatment with the complex revealed slight morphological changes in the case of B. subtilis, without any change in the case of E. coli. The toxicity studies on chromium-catechin complex using bacterial model saves time, as well as resources by providing quick and reliable results, which could ease up the work to be done in future with higher group of organisms like animal model. Therefore, in the future, this complex can be used as an antidiabetic drug after performing toxicity studies with animal model.

4.
ACS Appl Bio Mater ; 1(6): 1942-1958, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34996257

RESUMO

Functionalized nanoparticle cross-linked collagen scaffolds offer improved properties to biomaterials and regenerated tissues, as influence of nanoparticle shape on collagen scaffold has received little attention. The present study evaluates the role of ZnO nanoparticle shape (sphere, rod, hexagonal, needle, flower, star, circular disk, doughnut, and cube) on collagen self-assembly. The nanoparticle was prepared by using coprecipitation method and subsequently functionalized with triethoxysilane poly(amidoamine) dendrimer generation 1 (TES-PAMAM-G1 or G1) on the nanoparticle surface. The self-assembly process of collagen, facilitated by EDC-NHS cross-linking, led to stable ZnO-TES-PAMAM-G1-collagen scaffolds. Physicochemical properties and biocompatibility of scaffolds were analyzed to determine the thermal, mechanical and pore size transformation and cell viability, etc. and obtained results compared against collagen scaffolds with/without EDC-NHS cross-linking. In vivo wound healing activity of ZnO-TES-PAMAM-G1-collagen scaffolds was tested on Albino rats that were subjected to excisional wounds and results were compared with control and collagen scaffold. Our findings suggested that the functionalized nanostructure mediated collagen scaffolds exhibited higher thermal (91.2 ± 0.3 °C) and mechanical stability (130.23-305.45 ± 0.1-2.0 MPa) than collagen scaffold (77.36 ± 0.5 °C and 7.96 ± 0.8 MPa). The result of in vivo wound healing study indicated that spherical shape of ZnO-TES-PAMAM -G1 NPs cross-linked collagen scaffold showed enhanced re-epithelization and faster collagen deposition than other scaffolds probably owing to their higher surface area, which led to higher grafting density on the surface. This work provides a new approach for designing nanoparticle mediated collagen scaffold for wound healing application.

5.
Biochim Biophys Acta ; 1760(5): 814-9, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16581188

RESUMO

The dinucleating ligand, tpbpd (tetrapyridyl biphenylenediamine) forms a dicopper complex with practically no electronic coupling between the two copper (II) centres. The EPR spectrum of the complex is consistent with coordination of each copper ion to two nitrogens of the binuclear ligand. Cyclic voltammogram of the complex also reveals that the two copper (II) centres have identical ligating environment. This dimeric copper (II) complex is found to be a very efficient catalyst for the cleavage of plasmid DNA in the absence of any added cofactor. The amount of conversion of supercoiled form (Form I) of plasmid to the open circular form (Form II) depends on the concentration of the complex as well as the duration of incubation of the complex with DNA. The maximum rate of conversion of the supercoiled form to the nicked circular form at pH 7.5 in the presence of 150 microM of the complex is found to be 1.8 x 10(-3) s(-1).


Assuntos
DNA Super-Helicoidal/química , Compostos Organometálicos/química , Plasmídeos/química , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Hidrólise , Compostos Organometálicos/síntese química
6.
J Inorg Biochem ; 101(3): 434-43, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17208305

RESUMO

Two new cobalt complexes, [Co(pytpy)(2)](ClO(4))(2), 1, and [Co(pytpy)(2)](ClO(4))(3), 2 where pytpy=pyridine terpyridine, have been synthesized and characterized. Single-crystal X-ray structure of both the complexes has been resolved. The structure shows the complexes to be a monomeric cobalt(II) and cobalt(III) species with two pytpy ligands coordinated to the metal ion to give a six coordinate complex. Both cobalt(II) and cobalt(III) complexes crystallize in meridional configuration. The interaction of these complexes with calf thymus DNA has been explored by using absorption, emission spectral, electrochemical studies and viscosity measurements. From the experimental results the DNA binding constants of 1 and 2 are found to be (1.97+/-0.15)x10(4)M(-1) and (2.7+/-0.20)x10(4)M(-1) respectively. The ratio of DNA binding constants of 1 and 2 have been estimated to be 0.82 from electrochemical studies, which is in close agreement with the value of 0.73 obtained from spectral studies. The observed changes in viscosity of DNA in the presence of increasing amount of complexes 1 and 2 suggest intercalating binding of these complexes to DNA. Results of DNA cleaving experiments reveal that complex 2 efficiently cleaves DNA under photolytic conditions while complex 1 does not cleave DNA under similar conditions.


Assuntos
Cobalto/química , DNA/química , Substâncias Intercalantes/química , Compostos Organometálicos/química , Animais , Bovinos , Cristalografia por Raios X , Estrutura Molecular , Fotólise , Piridinas/química , Análise Espectral , Viscosidade
7.
J Gen Appl Microbiol ; 52(3): 179-86, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16960334

RESUMO

Chromium toxicity is of prime concern due to chrome tanning processes in the leather sector. Chrome tanning results in the discharge of toxic levels of chromium causing pollution hazards. Chromium levels of Cr(III) and Cr(VI) were high above permissible limits in chrome samples after chrome tanning. The potential of Aspergillus niger MTCC 2594 to accumulate chromium as well as its biosorption capacity is investigated in this study. Bioaccumulation of Cr(III) and Cr(VI) in the spent chrome liquor has resulted in a 75-78% reduction of the initial Cr content in 24-36 h. A. niger biomass is found to be very effective in the biosorption of Cr(III) and Cr(VI) in spent chrome liquor. Maximum adsorption of 83% for biosorption of Cr(III) at 48 h and 79% of Cr(VI) at 36 h in spent chrome liquor is observed. The biosorption characteristics fit well with Langmuir and Freundlich isotherms and the adsorption parameters are evaluated. The biosorption of Cr also follows Lagergren kinetics. A. niger biomass is effectively used for the biosorption of chromium with 79-83% Cr removal in 36-48 h.


Assuntos
Aspergillus niger/metabolismo , Cromo/metabolismo , Poluentes Químicos da Água/metabolismo , Adsorção , Biodegradação Ambiental
8.
Free Radic Biol Med ; 38(1): 58-69, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15589372

RESUMO

The cytotoxicity of certain Cr(III) complexes, such as [Cr(salen)(H(2)O)(2)](+), [Cr(edta)(H(2)O)](-), [Cr(en)(3)](3+), [Cr(ox)(3)](3-), [Cr(pic)(3)], and CrCl(3), which differ in ionic character and ligand environment in human dermal skin fibroblasts, has been studied. After 72 h of exposure to 100 microM doses of chromium(III) complexes, the order in which the complexes had an inhibitory effect on cell viability was [Cr(en)(3)](3+) > [Cr(salen)(H(2)O)(2)](+) > [Cr(ox)(3)](3-) > [Cr(edta)(H(2)O)](-) > [Cr(pic)(3)] > CrCl(3). Based on viability studies it was confirmed that [Cr(en)(3)](3+), a triply charged cation, inhibits cell proliferation, and therefore, it was chosen to carry out further investigations. [Cr(en)(3)](3+), at a dose of 50 microM, was found to bring about surface morphological changes, evidenced by cellular blebbing and spike formation accompanied by nuclear damage. TEM analysis revealed substantial intracellular damage to fibroblasts in terms of the formation of apoptotic bodies and chromatin condensation, thus reflecting cell death. FACS analysis further revealed DNA damage by formation of a sub-G(1) peak with 84.2% DNA as aneuploid DNA and arrest of the G(2) / M phase of the cell cycle. Cellular DNA damage was confirmed by agarose gel electrophoresis with the characteristic appearance of a DNA streak in DNA isolated from [Cr(en)(3)](3+)-treated fibroblasts. The proposed mechanism suggests the plausible role of Cr(V), formed as a result of oxidation of Cr(III) by cellular oxidative enzymes, in the cytotoxic response. Consequently, any Cr(III) complex that is absorbed by cells and can be oxidized to Cr(V) must be considered a potential carcinogen. This has potential implications for the increased use of Cr(III) complexes as dietary supplements and highlights the need to consider the cytotoxicity and genotoxicity of a variety of Cr(III) complexes and to understand the potential hazards of Cr(III) complexes encountered in research laboratories.


Assuntos
Compostos de Cromo/toxicidade , Derme/citologia , Fibroblastos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Humanos , Oxirredução
9.
J Inorg Biochem ; 95(1): 47-54, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12706541

RESUMO

Understanding the mechanism of stabilization of collagen is an important area of research. Metal ions are known to interact with collagen and bring about the stability of the same. In the present investigation, the interaction of zirconium(IV) complexes with collagen was studied. The effect of zirconium(IV) complexes, namely zirconium oxychloride and zirconium oxalate on the enzymatic and thermal stability of collagen was investigated. Zirconium has been found to increase the hydrothermal stability of the rat tail tendon (RTT) collagen fibers to about 8-10 degrees C more than that of the native collagen. The order of stabilization of zirconium(IV) complexes is zirconium oxychloride>zirconium oxalate. This could be due to the differences in the type of interaction with collagen, which is also reflected in the differences in the conformational changes of collagen brought about by the two complexes. Zirconium oxychloride, which forms tetrameric species in solution, has been shown to have better crosslinking with collagen as seen from viscometry studies and hence provides better enzymatic stability to collagen than zirconium oxalate, which largely forms monomeric species in solution.


Assuntos
Colágeno Tipo I/metabolismo , Colagenases/metabolismo , Zircônio/química , Animais , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Colágeno Tipo I/química , Masculino , Modelos Moleculares , Oxalatos/química , Oxalatos/farmacologia , Ratos , Ratos Wistar , Viscosidade , Zircônio/farmacologia
10.
Carbohydr Polym ; 103: 250-60, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24528727

RESUMO

The intricacy of the different parameters involved in the hydration dynamics of collagen influences its performance as biomaterials. This work presents the molecular motions of collagen originating from the solvents and locust bean gum (LBG), which reveal the changes in solvation dynamics of the biopolymers affecting the surface as well as interfacial properties. Water, as a probe liquid bound in collagen has been investigated using a combination of thermoporometry, ATR-FTIR, circular dichroic spectroscopy, dielectric spectroscopy and SEM to explore the influence of LBG on collagen with respect to static and dynamic behaviour. The relaxation process of collagen in the frequency range of 0.01 Hz to 10(5)Hz and thermoporometry results indicate that the interfacial hydration dynamics are dependent on the applied concentration of LBG. This investigation explicitly reflects the rearrangements of the structural water clusters around the charged amino acids of collagen. These results can be employed to redesign the approach towards the development of collagen based biomaterials.


Assuntos
Colágeno/química , Galactanos/química , Mananas/química , Gomas Vegetais/química , Termodinâmica , Água/química , Estrutura Molecular
11.
Eur J Med Chem ; 68: 244-52, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23981531

RESUMO

Mononuclear complexes [Cu(Itpy)X(H2O)]X (Itpy--imidazole terpyridine, X--NO3 1 and X--ClO4 2) have been synthesized and characterized. Single crystal X-ray diffraction of complex 1 shows distorted octahedral geometry around the copper (II) ion. Presence of multiple hydrogen bonding network in the molecule results in anti-parallel stacking of the molecule. Both the complexes show dual mode of binding to DNA. Both the complexes have been found to bring about DNA cleavage in the presence of H2O2 and show potent cytotoxicity towards lung carcinoma cell line. The ability of the two complexes to induce apoptosis has been investigated by using combination of nuclear stains. FACS analysis shows that both the complexes bring about cell cycle arrest at 2.5 µM concentration.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , DNA/metabolismo , Imidazóis/química , Piridinas/química , Piridinas/toxicidade , Ânions/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Complexos de Coordenação/síntese química , Cobre/química , Cristalografia por Raios X , Clivagem do DNA/efeitos dos fármacos , Humanos , Ligação de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA