Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
RNA ; 30(4): 392-403, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38282417

RESUMO

The Mango I and II RNA aptamers have been widely used in vivo and in vitro as genetically encodable fluorogenic markers that undergo large increases in fluorescence upon binding to their ligand, TO1-Biotin. However, while studying nucleic acid sequences, it is often desirable to have trans-acting probes that induce fluorescence upon binding to a target sequence. Here, we rationally design three types of light-up RNA Mango Beacons based on a minimized Mango core that induces fluorescence upon binding to a target RNA strand. Our first design is bimolecular in nature and uses a DNA inhibition strand to prevent folding of the Mango aptamer core until binding to a target RNA. Our second design is unimolecular in nature, and features hybridization arms flanking the core that inhibit G-quadruplex folding until refolding is triggered by binding to a target RNA strand. Our third design builds upon this structure, and incorporates a self-inhibiting domain into one of the flanking arms that deliberately binds to, and precludes folding of, the aptamer core until a target is bound. This design separates G-quadruplex folding inhibition and RNA target hybridization into separate modules, enabling a more universal unimolecular beacon design. All three Mango Beacons feature high contrasts and low costs when compared to conventional molecular beacons, with excellent potential for in vitro and in vivo applications.


Assuntos
Aptâmeros de Nucleotídeos , Mangifera , RNA/genética , Mangifera/genética , Mangifera/metabolismo , Corantes Fluorescentes/química , Aptâmeros de Nucleotídeos/química , Hibridização de Ácido Nucleico
2.
Nucleic Acids Res ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38945550

RESUMO

Fluorogenic RNA aptamer tags with high affinity enable RNA purification and imaging. The G-quadruplex (G4) based Mango (M) series of aptamers were selected to bind a thiazole orange based (TO1-Biotin) ligand. Using a chemical biology and reselection approach, we have produced a MII.2 aptamer-ligand complex with a remarkable set of properties: Its unprecedented KD of 45 pM, formaldehyde resistance (8% v/v), temperature stability and ligand photo-recycling properties are all unusual to find simultaneously within a small RNA tag. Crystal structures demonstrate how MII.2, which differs from MII by a single A23U mutation, and modification of the TO1-Biotin ligand to TO1-6A-Biotin achieves these results. MII binds TO1-Biotin heterogeneously via a G4 surface that is surrounded by a stadium of five adenosines. Breaking this pseudo-rotational symmetry results in a highly cooperative and homogeneous ligand binding pocket: A22 of the G4 stadium stacks on the G4 binding surface while the TO1-6A-Biotin ligand completely fills the remaining three quadrants of the G4 ligand binding face. Similar optimization attempts with MIII.1, which already binds TO1-Biotin in a homogeneous manner, did not produce such marked improvements. We use the novel features of the MII.2 complex to demonstrate a powerful optically-based RNA purification system.


Artificial RNA tags that tightly bind fluorogenic ligands have many RNA imaging and RNA-protein biomolecular purification applications. Here, we report and structurally characterize a very small (20-nt) biologically compatible G-quadruplex based aptamer that can be inserted into commonly found GNRA tetraloops. This aptamer binds its fluorogenic ligand with an unprecedented picomolar binding affinity and is very stable against thermal and chemical insults. As the ligand can be modified to include biotin, this RNA tag can also be bound to streptavidin magnetic beads. After washing, tagged RNA can be cleanly eluted by exposing the beads to intense green light, which photobleaches the bound fluorogenic ligand, triggering the release of the bound RNA complex.

3.
RNA ; 28(12): 1643-1658, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36198425

RESUMO

The E. coli 6S RNA is an RNA polymerase (RNAP) inhibitor that competes with σ70-dependent DNA promoters for binding to RNAP holoenzyme (RNAP:σ70). The 6S RNA when bound is then used as a template to synthesize a short product RNA (pRNA; usually 13-nt-long). This pRNA changes the 6S RNA structure, triggering the 6S RNA:pRNA complex to release and allowing DNA-dependent housekeeping gene expression to resume. In high nutrient conditions, 6S RNA turnover is extremely rapid but becomes very slow in low nutrient environments. This leads to a large accumulation of inhibited RNAP:σ70 in stationary phase. As pRNA initiates synthesis with ATP, we and others have proposed that the 6S RNA release rate strongly depends on ATP levels as a proxy for sensing the cellular metabolic state. By purifying endogenous 6S RNA:pRNA complexes using RNA Mango and using reverse transcriptase to generate pRNA-cDNA chimeras, we demonstrate that 6S RNA:pRNA formation can be simultaneous with 6S RNA 5' maturation. More importantly, we find a dramatic accumulation of capped pRNAs during stationary phase. This indicates that ATP levels in stationary phase are low enough for noncanonical initiator nucleotides (NCINs) such as NAD+ and NADH to initiate pRNA synthesis. In vitro, mutation of the conserved 6S RNA template sequence immediately upstream of the pRNA transcriptional start site can increase or decrease the pRNA capping efficiency, suggesting that evolution has tuned the biological 6S RNA sequence for an optimal capping rate. NCIN-initiated pRNA synthesis may therefore be essential for cell viability in low nutrient conditions.


Assuntos
Escherichia coli , Nucleotídeos , Escherichia coli/genética , Escherichia coli/metabolismo , Nucleotídeos/metabolismo , Transcrição Gênica , Conformação de Ácido Nucleico , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator sigma/genética , Fator sigma/metabolismo
4.
Chem Soc Rev ; 52(12): 4071-4098, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37278064

RESUMO

The field of fluorogenic RNA aptamers is a burgeoning research area that aims to address the lack of naturally fluorescent RNA molecules for RNA detection and imaging. These small RNA tags bind to their fluorogenic ligands resulting in significant fluorescent enhancement, leading to a molar brightness comparable to or exceeding that of fluorescent proteins. In the past decade, multiple light-up RNA aptamer systems have been isolated that bind to a broad range of ligands involving several distinct mechanisms of fluorogenicity. This review discusses the selection methods used to isolate fluorogenic RNA aptamers. More than seventy fluorogenic aptamer:ligand pairs are evaluated using objective parameters (e.g., molar brightness, binding affinity, fluorophore exchange capabilities and other details). General guidelines for choosing fluorescent RNA tools, with an emphasis on single-molecule detection and multi-colour imaging applications are provided. Lastly the importance of global standards for evaluating fluorogenic RNA aptamer systems is discussed.


Assuntos
Aptâmeros de Nucleotídeos , RNA , RNA/química , Aptâmeros de Nucleotídeos/química , Ligantes , Corantes Fluorescentes/química , Diagnóstico por Imagem
5.
RNA ; 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674421

RESUMO

Two-channel fluorogenic RNA aptamer-based imaging is currently challenging. While we have previously characterized the Mango series of aptamers that bind tightly and specifically to the green fluorophore TO1-Biotin, the next aim was to identify an effective fluorogenic aptamer partner for two-color imaging. A competitive in vitro selection for TO3-Biotin binding aptamers was performed resulting in the Peach I and II aptamers. Remarkably, given that the TO1-Biotin and TO3-Biotin heterocycles differ by only two bridging carbons, these new aptamers exhibit a marked preference for TO3-Biotin binding relative to the iM3 and Mango III A10U aptamers, which preferentially bind TO1-Biotin. Peach I, like Mango I and II, appears to contain a quadruplex core isolated by a GAA^A type tetraloop-like adaptor from its closing stem. Thermal melts of the Peach aptamers reveal that TO3-Biotin binding is cooperative, while TO1-Biotin binding is not, suggesting a unique and currently uncharacterized mode of ligand differentiation. Using only fluorescent measurements, the concentrations of Peach and Mango aptamers could be reliably determined in vitro. The utility of this orthogonal pair provides a possible route to in vivo two-color RNA imaging.

6.
RNA ; 27(4): 433-444, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33376189

RESUMO

To further understand the transcriptome, new tools capable of measuring folding, interactions, and localization of RNA are needed. Although Förster resonance energy transfer (FRET) is an angle- and distance-dependent phenomenon, the majority of FRET measurements have been used to report distances, by assuming rotationally averaged donor-acceptor pairs. Angle-dependent FRET measurements have proven challenging for nucleic acids due to the difficulties in incorporating fluorophores rigidly into local substructures in a biocompatible manner. Fluorescence turn-on RNA aptamers are genetically encodable tags that appear to rigidly confine their cognate fluorophores, and thus have the potential to report angular-resolved FRET. Here, we use the fluorescent aptamers Broccoli and Mango-III as donor and acceptor, respectively, to measure the angular dependence of FRET. Joining the two fluorescent aptamers by a helix of variable length allowed systematic rotation of the acceptor fluorophore relative to the donor. FRET oscillated in a sinusoidal manner as a function of helix length, consistent with simulated data generated from models of oriented fluorophores separated by an inflexible helix. Analysis of the orientation dependence of FRET allowed us to demonstrate structural rigidification of the NiCo riboswitch upon transition metal-ion binding. This application of fluorescence turn-on aptamers opens the way to improved structural interpretation of ensemble and single-molecule FRET measurements of RNA.


Assuntos
Aptâmeros de Nucleotídeos/química , Transferência Ressonante de Energia de Fluorescência/métodos , RNA/química , Riboswitch , Aptâmeros de Nucleotídeos/metabolismo , Fluorescência , Corantes Fluorescentes/química , Modelos Moleculares , Conformação de Ácido Nucleico , RNA/metabolismo
7.
RNA ; 25(12): 1806-1813, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31551299

RESUMO

There is a pressing need for nucleic acid-based assays that are capable of rapidly and reliably detecting pathogenic organisms. Many of the techniques available for the detection of pathogenic RNA possess one or more limiting factors that make the detection of low-copy RNA challenging. Although RT-PCR is the most commonly used method for detecting pathogen-related RNA, it requires expensive thermocycling equipment and is comparatively slow. Isothermal methods promise procedural simplicity but have traditionally suffered from amplification artifacts that tend to preclude easy identification of target nucleic acids. Recently, the isothermal SHERLOCK system overcame this problem by using CRISPR to distinguish amplified target sequences from artifactual background signal. However, this system comes at the cost of introducing considerable enzymatic complexity and a corresponding increase in total assay time. Therefore, simpler and less expensive strategies are highly desirable. Here, we demonstrate that by nesting NASBA primers and modifying the NASBA inner primers to encode an RNA Mango aptamer sequence we can dramatically increase the sensitivity of NASBA to 1.5 RNA molecules per microliter. As this isothermal nucleic acid detection scheme directly produces a fluorescent reporter, real-time detection is intrinsic to the assay. Nested Mango NASBA is highly specific and, in contrast to existing RNA detection systems, offers a cheap, simple, and specific way to rapidly detect single-molecule amounts of pathogenic RNA.


Assuntos
Técnicas de Amplificação de Ácido Nucleico/métodos , RNA/genética , Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes , Fluorometria/métodos , Humanos , Técnicas de Amplificação de Ácido Nucleico/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Nat Chem Biol ; 15(5): 472-479, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30992561

RESUMO

Several turn-on RNA aptamers that activate small-molecule fluorophores have been selected in vitro. Among these, the ~30 nucleotide Mango-III is notable because it binds the thiazole orange derivative TO1-Biotin with high affinity and fluoresces brightly (quantum yield 0.55). Uniquely among related aptamers, Mango-III exhibits biphasic thermal melting, characteristic of molecules with tertiary structure. We report crystal structures of TO1-Biotin complexes of Mango-III, a structure-guided mutant Mango-III(A10U), and a functionally reselected mutant iMango-III. The structures reveal a globular architecture arising from an unprecedented pseudoknot-like connectivity between a G-quadruplex and an embedded non-canonical duplex. The fluorophore is restrained into a planar conformation by the G-quadruplex, a lone, long-range trans Watson-Crick pair (whose A10U mutation increases quantum yield to 0.66), and a pyrimidine perpendicular to the nucleobase planes of those motifs. The improved iMango-III and Mango-III(A10U) fluoresce ~50% brighter than enhanced green fluorescent protein, making them suitable tags for live cell RNA visualization.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Aptâmeros de Nucleotídeos/genética , Mutação , Conformação de Ácido Nucleico
9.
RNA ; 23(10): 1592-1599, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28747322

RESUMO

The characterization of RNA-protein complexes (RNPs) is a difficult but increasingly important problem in modern biology. By combining the compact RNA Mango aptamer with a fluorogenic thiazole orange desthiobiotin (TO1-Dtb or TO3-Dtb) ligand, we have created an RNA tagging system that simplifies the purification and subsequent characterization of endogenous RNPs. Mango-tagged RNP complexes can be immobilized on a streptavidin solid support and recovered in their native state by the addition of free biotin. Furthermore, Mango-based RNP purification can be adapted to different scales of RNP isolation ranging from pull-down assays to the isolation of large amounts of biochemically defined cellular RNPs. We have incorporated the Mango aptamer into the S. cerevisiae U1 small nuclear RNA (snRNA), shown that the Mango-snRNA is functional in cells, and used the aptamer to pull down a U1 snRNA-associated protein. To demonstrate large-scale isolation of RNPs, we purified and characterized bacterial RNA polymerase holoenzyme (HE) in complex with a Mango-containing 6S RNA. We were able to use the combination of a red-shifted TO3-Dtb ligand and eGFP-tagged HE to follow the binding and release of the 6S RNA by two-color native gel analysis as well as by single-molecule fluorescence cross-correlation spectroscopy. Together these experiments demonstrate how the Mango aptamer in conjunction with simple derivatives of its flurophore ligands enables the purification and characterization of endogenous cellular RNPs in vitro.


Assuntos
Aptâmeros de Nucleotídeos/química , Bioquímica/métodos , Ribonucleoproteínas/isolamento & purificação , Espectrometria de Fluorescência/métodos , Benzotiazóis/química , Biotina/análogos & derivados , Biotina/química , Proteínas de Fluorescência Verde/genética , Quinolinas/química , RNA Bacteriano/metabolismo , RNA Nuclear Pequeno/química , RNA não Traduzido/metabolismo , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/genética
10.
Nat Chem Biol ; 13(7): 807-813, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28553947

RESUMO

Genetically encoded fluorescent protein tags have revolutionized proteome studies, whereas the lack of intrinsically fluorescent RNAs has hindered transcriptome exploration. Among several RNA-fluorophore complexes that potentially address this problem, RNA Mango has an exceptionally high affinity for its thiazole orange (TO)-derived fluorophore, TO1-Biotin (Kd ∼3 nM), and, in complex with related ligands, it is one of the most redshifted fluorescent macromolecular tags known. To elucidate how this small aptamer exhibits such properties, which make it well suited for studying low-copy cellular RNAs, we determined its 1.7-Å-resolution co-crystal structure. Unexpectedly, the entire ligand, including TO, biotin and the linker connecting them, abuts one of the near-planar faces of the three-tiered G-quadruplex. The two heterocycles of TO are held in place by two loop adenines and form a 45° angle with respect to each other. Minimizing this angle would increase quantum yield and further improve this tool for in vivo RNA visualization.


Assuntos
Benzotiazóis/química , Corantes Fluorescentes/química , Quinolinas/química , RNA/química , Sítios de Ligação , Ligantes
11.
Biochemistry ; 57(26): 3544-3548, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29768001

RESUMO

Several RNA aptamers that bind small molecules and enhance their fluorescence have been successfully used to tag and track RNAs in vivo, but these genetically encodable tags have not yet achieved single-fluorophore resolution. Recently, Mango-II, an RNA that binds TO1-Biotin with ∼1 nM affinity and enhances its fluorescence by >1500-fold, was isolated by fluorescence selection from the pool that yielded the original RNA Mango. We determined the crystal structures of Mango-II in complex with two fluorophores, TO1-Biotin and TO3-Biotin, and found that despite their high affinity, the ligands adopt multiple distinct conformations, indicative of a binding pocket with modest stereoselectivity. Mutational analysis of the binding site led to Mango-II(A22U), which retains high affinity for TO1-Biotin but now discriminates >5-fold against TO3-biotin. Moreover, fluorescence enhancement of TO1-Biotin increases by 18%, while that of TO3-Biotin decreases by 25%. Crystallographic, spectroscopic, and analogue studies show that the A22U mutation improves conformational homogeneity and shape complementarity of the fluorophore-RNA interface. Our work demonstrates that even after extensive functional selection, aptamer RNAs can be further improved through structure-guided engineering.


Assuntos
Aptâmeros de Nucleotídeos/química , Benzotiazóis/química , Biotina/química , Corantes Fluorescentes/química , Quinolinas/química , Sítios de Ligação , Cristalografia por Raios X , Simulação de Acoplamento Molecular
12.
BMC Genomics ; 19(1): 223, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29587634

RESUMO

BACKGROUND: Understanding the RNA processing of an organism's transcriptome is an essential but challenging step in understanding its biology. Here we investigate with unprecedented detail the transcriptome of Pseudomonas aeruginosa PAO1, a medically important and innately multi-drug resistant bacterium. We systematically mapped RNA cleavage and dephosphorylation sites that result in 5'-monophosphate terminated RNA (pRNA) using monophosphate RNA-Seq (pRNA-Seq). Transcriptional start sites (TSS) were also mapped using differential RNA-Seq (dRNA-Seq) and both datasets were compared to conventional RNA-Seq performed in a variety of growth conditions. RESULTS: The pRNA-Seq library revealed known tRNA, rRNA and transfer-messenger RNA (tmRNA) processing sites, together with previously uncharacterized RNA cleavage events that were found disproportionately near the 5' ends of transcripts associated with basic bacterial functions such as oxidative phosphorylation and purine metabolism. The majority (97%) of the processed mRNAs were cleaved at precise codon positions within defined sequence motifs indicative of distinct endonucleolytic activities. The most abundant of these motifs corresponded closely to an E. coli RNase E site previously established in vitro. Using the dRNA-Seq library, we performed an operon analysis and predicted 3159 potential TSS. A correlation analysis uncovered 105 antiparallel pairs of TSS that were separated by 18 bp from each other and were centered on single palindromic TAT(A/T)ATA motifs (likely - 10 promoter elements), suggesting that, consistent with previous in vitro experimentation, these sites can initiate transcription bi-directionally and may thus provide a novel form of transcriptional regulation. TSS and RNA-Seq analysis allowed us to confirm expression of small non-coding RNAs (ncRNAs), many of which are differentially expressed in swarming and biofilm formation conditions. CONCLUSIONS: This study uses pRNA-Seq, a method that provides a genome-wide survey of RNA processing, to study the bacterium Pseudomonas aeruginosa and discover extensive transcript processing not previously appreciated. We have also gained novel insight into RNA maturation and turnover as well as a potential novel form of transcription regulation. NOTE: All sequence data has been submitted to the NCBI sequence read archive. Accession numbers are as follows: [NCBI sequence read archive: SRX156386, SRX157659, SRX157660, SRX157661, SRX157683 and SRX158075]. The sequence data is viewable using Jbrowse on www.pseudomonas.com .


Assuntos
Genoma Bacteriano , Pseudomonas aeruginosa/genética , Processamento Pós-Transcricional do RNA , RNA Bacteriano/genética , Sítio de Iniciação de Transcrição , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/crescimento & desenvolvimento , Análise de Sequência de RNA
13.
RNA ; 22(12): 1884-1892, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27777365

RESUMO

The effective tracking and purification of biological RNAs and RNA protein complexes is currently challenging. One promising strategy to simultaneously address both of these problems is to develop high-affinity RNA aptamers against taggable small molecule fluorophores. RNA Mango is a 39-nucleotide, parallel-stranded G-quadruplex RNA aptamer motif that binds with nanomolar affinity to a set of thiazole orange (TO1) derivatives while simultaneously inducing a 103-fold increase in fluorescence. We find that RNA Mango has a large increase in its thermal stability upon the addition of its TO1-Biotin ligand. Consistent with this thermal stabilization, RNA Mango can effectively discriminate TO1-Biotin from a broad range of small molecule fluorophores. In contrast, RNA Spinach, which is known to have a substantially more rigid G-quadruplex structure, was found to bind to this set of fluorophores, often with higher affinity than to its native ligand, 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI), and did not exhibit thermal stabilization in the presence of the TO1-Biotin fluorophore. Our data suggest that RNA Mango is likely to use a concerted ligand-binding mechanism that allows it to simultaneously bind and recognize its TO1-Biotin ligand, whereas RNA Spinach appears to lack such a mechanism. The high binding affinity and fluorescent efficiency of RNA Mango provides a compelling alternative to RNA Spinach as an RNA reporter system and paves the way for the future development of small fluorophore RNA reporter systems.


Assuntos
Corantes Fluorescentes/química , Mangifera/química , RNA de Plantas/química , Spinacia oleracea/química , Ligantes , Espectrometria de Fluorescência , Temperatura
14.
RNA ; 20(5): 670-80, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24681966

RESUMO

6S RNA is a noncoding RNA that inhibits bacterial transcription by sequestering RNA polymerase holoenzyme (Eσ(70)) in low-nutrient conditions. This transcriptional block can be relieved by the synthesis of a short product RNA (pRNA) using the 6S RNA as a template. Here, we selected a range of 6S RNA release-defective mutants from a high diversity in vitro pool. Studying the release-defective variant R9-33 uncovered complex interactions between three regions of the 6S RNA. As expected, mutating the transcriptional start site (TSS) slowed and partially inhibited release. Surprisingly, additional mutations near the TSS were found that rescued this effect. Likewise, three mutations in the top strand of the large open bubble (LOB) could considerably slow release but were rescued by the addition of upstream mutations found between a highly conserved "-35" motif and the LOB. Combining the three top strand LOB mutations with mutations near the TSS, however, was particularly effective at preventing release, and this effect could be further enhanced by inclusion of the upstream mutations. Overexpressing R9-33 and a series of milder release-defective mutants in Escherichia coli resulted in a delayed entry into exponential phase together with a decrease in cell survival that correlated well with the severity of the in vitro phenotypes. The complex crosstalk observed between distinct regions of the 6S RNA supports a scrunching type model of 6S RNA release, where at least three regions of the 6S RNA must interact with Eσ(70) in a cooperative manner so as to ensure effective pRNA-dependent release.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Mutação , RNA Bacteriano/genética , Fator sigma/genética , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA Bacteriano/metabolismo , RNA não Traduzido/genética , Sítio de Iniciação de Transcrição , Transcrição Gênica
15.
BMC Genomics ; 16: 151, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25764986

RESUMO

BACKGROUND: Leishmania use exosomes to communicate with their mammalian hosts and these secreted vesicles appear to contribute to pathogenesis by delivering protein virulence factors to macrophages. In other eukaryotes, exosomes were found to carry RNA cargo, such as mRNAs and small non-coding RNAs, capable of altering recipient cell phenotype. Whether leishmania exosomes also contain RNAs which they are able to deliver to bystander cells is not known. Here, we show that leishmania exosomes indeed contain RNAs and compare and contrast the RNA content of exosomes released by Leishmania donovani and Leishmania braziliensis. RESULTS: We purified RNA from exosomes collected from axenic amastigote culture supernatant and found that when compared with total leishmania RNA, exosomes mainly contained short RNA sequences. Exosomes with intact membranes were capable of protecting their RNA cargo from degradation by RNase. Moreover, exosome RNA cargo was delivered to host cell cytoplasm in vitro. Sequencing of exosomal RNA indicated that the majority of cargo sequences were derived from non-coding RNA species such as rRNA and tRNA. In depth analysis revealed the presence of tRNA-derived small RNAs, a novel RNA type with suspected regulatory functions. Northern blotting confirmed the specific and selective enrichment of tRNA-derived small RNAs in exosomes. We also identified a number of novel transcripts, which appeared to be specifically enriched in exosomes compared to total cell RNA. In addition, we observed the presence of sequences mapping to siRNA-coding regions in L. braziliensis , but not in L. donovani exosomes. CONCLUSIONS: These results show that leishmania exosomes are selectively and specifically enriched in small RNAs derived almost exclusively from non-coding RNAs. These exosomes are competent to deliver their cargo of novel, potential small regulatory RNAs to macrophages where they may influence parasite-host cell interactions. The remarkably high degree of congruence in exosomal RNA content between L. donovani and L. braziliensis, argues for the presence of a conserved mechanism for exosomal RNA packaging in leishmania. These findings open up a new avenue of research on non-canonical, small RNA pathways in this trypanosomatid, which may elucidate pathogenesis and identify novel therapeutic approaches.


Assuntos
Exossomos/genética , Leishmaniose Visceral/genética , Pequeno RNA não Traduzido/genética , RNA de Transferência/genética , Animais , Sequência de Bases , Leishmania braziliensis/genética , Leishmania braziliensis/patogenicidade , Leishmania donovani/genética , Leishmania donovani/patogenicidade , Leishmaniose Visceral/parasitologia , MicroRNAs/genética , RNA Mensageiro/genética
16.
RNA ; 18(12): 2251-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23118417

RESUMO

The 6S RNA in Escherichia coli suppresses housekeeping transcription by binding to RNA polymerase holoenzyme (core polymerase + σ7°) under low nutrient conditions and rescues σ7°-dependent transcription in high nutrient conditions by the synthesis of a short product RNA (pRNA) using itself as a template. Here we characterize a kinetic intermediate that arises during 6S RNA release. This state, consisting of 6S RNA and core polymerase, is related to the formation of a top-strand "release" hairpin that is conserved across the γ-proteobacteria. Deliberately slowing the intrinsic 6S RNA release rate by nucleotide feeding experiments reveals that σ7° ejection occurs abruptly once a pRNA length of 9 nucleotides (nt) is reached. After σ7° ejection, an additional 4 nt of pRNA synthesis is required before the 6S:pRNA complex is finally released from core polymerase. Changing the E. coli 6S RNA sequence to preclude formation of the release hairpin dramatically slows the speed of 6S RNA release but, surprisingly, does not alter the abruptness of σ7° ejection. Rather, the pRNA size required to trigger σ7° release increases from 9 nt to 14 nt. That a precise pRNA length is required to trigger σ7° release either with or without a hairpin implicates an intrinsic "scrunching"-type release mechanism. We speculate that the release hairpin serves two primary functions in the γ-proteobacteria: First, its formation strips single-stranded "-10" 6S RNA interactions away from σ7°. Second, the formation of the hairpin accumulates RNA into a region of the polymerase complex previously associated with DNA scrunching, further destabilizing the 6S:pRNA:polymerase complex.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Fator sigma/metabolismo , Sequência de Bases , Sequência Conservada , Escherichia coli/genética , Cinética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Bacteriano/genética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA não Traduzido
17.
RNA ; 17(3): 469-77, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21224380

RESUMO

The "RNA world" hypothesis rests on the assumption that RNA polymerase ribozymes can replicate RNA without the use of protein. In the laboratory, in vitro selection has been used to create primitive versions of such polymerases. The best variant to date is a ribozyme called B6.61 that can extend a RNA primer template by 20 nucleotides (nt). This polymerase has two domains: the recently crystallized Class I ligase core, responsible for phosphodiester bond formation, and the poorly characterized accessory domain that makes polymerization possible. Here we find that the accessory domain is specified by a 37-nt bulged stem-loop structure. The accessory domain is positioned by a tertiary interaction between the terminal AL4 loop of the accessory and the J3/4 triloop found within the ligase core. This docking interaction is associated with an unwinding of the A3 and A4 helixes that appear to facilitate the correct positioning of an essential 8-nt purine bulge found between the two helices. This, together with other constraints inferred from tethering the accessory domain to a range of sites on the ligase core, indicates that the accessory domain is draped over the vertex of the ligase core tripod structure. This geometry suggests how the purine bulge in the polymerase replaces the P2 helix in the Class I ligase with a new structure that may facilitate the stabilization of incoming nucleotide triphosphates.


Assuntos
RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Catalítico/química , RNA Catalítico/metabolismo , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Catálise , Ligases/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico
18.
RNA ; 16(5): 885-92, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20354151

RESUMO

6S RNA is an important noncoding RNA that regulates eubacterial transcription. In Escherichia coli this RNA binds to the sigma(70) RNA polymerase holoenzyme and is released by the synthesis of a short product RNA. In order to determine how binding and release are controlled by the 6S RNA sequence, we used in vitro selection to screen a high diversity library containing approximately 4 x 10(12) sequences for functional 6S RNA variants. Residues critical for binding were found to be located in a "-35" region upstream of the 6S RNA transcription bubble mimic structure. Mutating these phylogenetically conserved residues invariably led to decreases in binding and removing them abolished binding, implicating these nucleotides in a biologically important interaction with the Esigma(70) complex. Interestingly, mutation of phylogenetically conserved "-10" residues that were also upstream of the site of pRNA synthesis was found to influence 6S RNA release rates in addition to modulating -35 binding. These results indicate how 6S RNA -35 binding to sigma(70) RNA polymerase holoenzyme can regulate expression from "strong" and "weak" -35 DNA promoters and suggest that 6S RNA release rates have been fine tuned over evolutionary time so as to correctly regulate cellular levels of transcription.


Assuntos
Escherichia coli K12/genética , Escherichia coli K12/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Sequência Consenso , Sequência Conservada , RNA Polimerases Dirigidas por DNA/metabolismo , Evolução Molecular , Biblioteca Gênica , Cinética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Filogenia , Regiões Promotoras Genéticas , RNA Bacteriano/química , RNA não Traduzido , Deleção de Sequência , Fator sigma/metabolismo
19.
Methods Mol Biol ; 2404: 267-280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34694614

RESUMO

In recent years, fluorogenic RNA aptamers, such as Spinach, Broccoli, Corn, Mango, Coral, and Pepper have gathered traction as an efficient alternative labeling strategy for background-free imaging of cellular RNAs. However, their application has been somewhat limited by relatively inefficient folding and fluorescent stability. With the recent advent of novel RNA-Mango variants which are improved in both fluorescence intensity and folding stability in tandem arrays, it is now possible to image RNAs with single-molecule sensitivity. Here we discuss the protocol for imaging Mango II tagged RNAs in both fixed and live cells.


Assuntos
Mangifera , RNA/genética , Aptâmeros de Nucleotídeos , Corantes Fluorescentes , Spinacia oleracea
20.
RNA ; 15(4): 724-31, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19237462

RESUMO

Here we present a simple and inexpensive gel-shift assay for the detection and quantification of small RNAs. The assay is at least 5-10 times more sensitive than a conventional Northern, and is highly scalable. Total RNA is first size purified to enrich the desired size range, phosphatase treated, and then radiolabeled to high specific activity using polynucleotide kinase. The resulting RNA stock is then hybridized to an excess of biotinylated DNA probe oligonucleotide, prior to mixing with streptavidin and loading on a native gel. The amount of supershifted material was proportional to the amount of labeled target RNA in the sample. We applied this method to verify sequencing data originally obtained from a four-point comparison study on the effect of endogenous expression of HC-Pro on Y-satellite/cucumber mosaic virus infection in tobacco plants. The results of the streptavidin gel-shift assay were consistent with the concentrations of small RNA infected plants inferred by our original cloning data, and rapidly provided information about the relative concentration of a number of viral and endogenous small RNAs. Further straightforward improvements to this simple methodology might be expected to improve the methods sensitivity by as much as another 10-fold.


Assuntos
Ensaio de Desvio de Mobilidade Eletroforética/métodos , RNA não Traduzido/análise , Plantas/genética , RNA de Plantas/análise , Sensibilidade e Especificidade , Estreptavidina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA