Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mol Cell ; 68(1): 89-103.e7, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28943313

RESUMO

Genomic imprinting is an allelic gene expression phenomenon primarily controlled by allele-specific DNA methylation at the imprinting control region (ICR), but the underlying mechanism remains largely unclear. N-α-acetyltransferase 10 protein (Naa10p) catalyzes N-α-acetylation of nascent proteins, and mutation of human Naa10p is linked to severe developmental delays. Here we report that Naa10-null mice display partial embryonic lethality, growth retardation, brain disorders, and maternal effect lethality, phenotypes commonly observed in defective genomic imprinting. Genome-wide analyses further revealed global DNA hypomethylation and enriched dysregulation of imprinted genes in Naa10p-knockout embryos and embryonic stem cells. Mechanistically, Naa10p facilitates binding of DNA methyltransferase 1 (Dnmt1) to DNA substrates, including the ICRs of the imprinted allele during S phase. Moreover, the lethal Ogden syndrome-associated mutation of human Naa10p disrupts its binding to the ICR of H19 and Dnmt1 recruitment. Our study thus links Naa10p mutation-associated Ogden syndrome to defective DNA methylation and genomic imprinting.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Deficiências do Desenvolvimento/genética , Epigênese Genética , Impressão Genômica , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética , RNA Longo não Codificante/genética , Animais , DNA/genética , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Deleção de Genes , Genes Letais , Estudo de Associação Genômica Ampla , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/patologia , Acetiltransferase N-Terminal A/deficiência , Acetiltransferase N-Terminal E/deficiência , Ligação Proteica , RNA Longo não Codificante/metabolismo , Fase S/genética
2.
J Biomol NMR ; 73(12): 675-685, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31541395

RESUMO

Protein-based NMR spectroscopy has proven to be a very robust method for finding fragment leads to protein targets. However, one limitation of protein-based NMR is that the data acquisition and analysis can be time consuming. In order to streamline the scoring of protein-based NMR fragment screening data and the determination of ligand affinities using 2D NMR experiments we have developed a data analysis workflow based on principal component analysis (PCA) within the TREND NMR Pro software package. We illustrate this using four different proteins and sets of ligands which interact with these proteins over a range of affinities. Also, these PCA-based methods can be successfully applied even to systems where ligand binding to target proteins is in intermediate or even slow exchange on the NMR time scale. Finally, these methods will work for scoring of fragment binding data using protein spectra that are either highly overlapped or lower in resolution.


Assuntos
Descoberta de Drogas/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Análise de Componente Principal/métodos , Ligantes , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica
3.
Nat Chem Biol ; 13(3): 317-324, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28114273

RESUMO

Protein lysine methyltransferases (PKMTs) regulate diverse physiological processes including transcription and the maintenance of genomic integrity. Genetic studies suggest that the PKMTs SUV420H1 and SUV420H2 facilitate proficient nonhomologous end-joining (NHEJ)-directed DNA repair by catalyzing the di- and trimethylation (me2 and me3, respectively) of lysine 20 on histone 4 (H4K20). Here we report the identification of A-196, a potent and selective inhibitor of SUV420H1 and SUV420H2. Biochemical and co-crystallization analyses demonstrate that A-196 is a substrate-competitive inhibitor of both SUV4-20 enzymes. In cells, A-196 induced a global decrease in H4K20me2 and H4K20me3 and a concomitant increase in H4K20me1. A-196 inhibited 53BP1 foci formation upon ionizing radiation and reduced NHEJ-mediated DNA-break repair but did not affect homology-directed repair. These results demonstrate the role of SUV4-20 enzymatic activity in H4K20 methylation and DNA repair. A-196 represents a first-in-class chemical probe of SUV4-20 to investigate the role of histone methyltransferases in genomic integrity.


Assuntos
Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Linhagem Celular Tumoral , Cristalografia por Raios X , Reparo do DNA/efeitos dos fármacos , Inibidores Enzimáticos/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Metilação/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular
4.
Bioorg Med Chem Lett ; 28(10): 1708-1713, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29691138

RESUMO

The tandem TUDOR domains present in the non-catalytic C-terminal half of the KDM4A, 4B and 4C enzymes play important roles in regulating their chromatin localizations and substrate specificities. They achieve this regulatory role by binding to different tri-methylated lysine residues on histone H3 (H3-K4me3, H3-K23me3) and histone H4 (H4-K20me3) depending upon the specific chromatin environment. In this work, we have used a 2D-NMR based fragment screening approach to identify a novel fragment (1a), which binds to the KDM4A-TUDOR domain and shows modest competition with H3-K4me3 binding in biochemical as well as in vitro cell based assays. A co-crystal structure of KDM4A TUDOR domain in complex with 1a shows that the fragment binds stereo-specifically to the methyl lysine binding pocket forming a network of strong hydrogen bonds and hydrophobic interactions. We anticipate that the fragment 1a can be further developed into a novel allosteric inhibitor of the KDM4 family of enzymes through targeting their C-terminal tandem TUDOR domain.


Assuntos
Histona Desmetilases com o Domínio Jumonji/química , Relação Dose-Resposta a Droga , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Histona Desmetilases com o Domínio Jumonji/metabolismo , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Relação Estrutura-Atividade , Domínio Tudor
5.
Nucleic Acids Res ; 40(11): 4841-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22362737

RESUMO

Cytosine residues in mammalian DNA occur in at least three forms, cytosine (C), 5-methylcytosine (M; 5mC) and 5-hydroxymethylcytosine (H; 5hmC). During semi-conservative DNA replication, hemi-methylated (M/C) and hemi-hydroxymethylated (H/C) CpG dinucleotides are transiently generated, where only the parental strand is modified and the daughter strand contains native cytosine. Here, we explore the role of DNA methyltransferases (DNMT) and ten eleven translocation (Tet) proteins in perpetuating these states after replication, and the molecular basis of their recognition by methyl-CpG-binding domain (MBD) proteins. Using recombinant proteins and modified double-stranded deoxyoligonucleotides, we show that DNMT1 prefers a hemi-methylated (M/C) substrate (by a factor of >60) over hemi-hydroxymethylated (H/C) and unmodified (C/C) sites, whereas both DNMT3A and DNMT3B have approximately equal activity on all three substrates (C/C, M/C and H/C). Binding of MBD proteins to methylated DNA inhibited Tet1 activity, suggesting that MBD binding may also play a role in regulating the levels of 5hmC. All five MBD proteins generally have reduced binding affinity for 5hmC relative to 5mC in the fully modified context (H/M versus M/M), though their relative abilities to distinguish the two varied considerably. We further show that the deamination product of 5hmC could be excised by thymine DNA glycosylase and MBD4 glycosylases regardless of context.


Assuntos
Citosina/análogos & derivados , Citosina/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Replicação do DNA , 5-Metilcitosina/análogos & derivados , DNA (Citosina-5-)-Metiltransferase 1 , Proteínas de Ligação a DNA/metabolismo , Humanos , Pentoxil (Uracila)/análogos & derivados , Pentoxil (Uracila)/metabolismo , Timina DNA Glicosilase/metabolismo
6.
Proc Natl Acad Sci U S A ; 108(39): 16212-6, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21908710

RESUMO

The 14-3-3 family of phosphoserine/threonine-recognition proteins engage multiple nodes in signaling networks that control diverse physiological and pathophysiological functions and have emerged as promising therapeutic targets for such diseases as cancer and neurodegenerative disorders. Thus, small molecule modulators of 14-3-3 are much needed agents for chemical biology investigations and therapeutic development. To analyze 14-3-3 function and modulate its activity, we conducted a chemical screen and identified 4-[(2Z)-2-[4-formyl-6-methyl-5-oxo-3-(phosphonatooxymethyl)pyridin-2-ylidene]hydrazinyl]benzoate as a 14-3-3 inhibitor, which we termed FOBISIN (FOurteen-three-three BInding Small molecule INhibitor) 101. FOBISIN101 effectively blocked the binding of 14-3-3 with Raf-1 and proline-rich AKT substrate, 40 kD(a) and neutralized the ability of 14-3-3 to activate exoenzyme S ADP-ribosyltransferase. To provide a mechanistic basis for 14-3-3 inhibition, the crystal structure of 14-3-3ζ in complex with FOBISIN101 was solved. Unexpectedly, the double bond linking the pyridoxal-phosphate and benzoate moieties was reduced by X-rays to create a covalent linkage of the pyridoxal-phosphate moiety to lysine 120 in the binding groove of 14-3-3, leading to persistent 14-3-3 inactivation. We suggest that FOBISIN101-like molecules could be developed as an entirely unique class of 14-3-3 inhibitors, which may serve as radiation-triggered therapeutic agents for the treatment of 14-3-3-mediated diseases, such as cancer.


Assuntos
Proteínas 14-3-3/antagonistas & inibidores , Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Animais , Células COS , Chlorocebus aethiops , Cristalografia por Raios X , Ensaio de Imunoadsorção Enzimática , Polarização de Fluorescência , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
J Med Chem ; 67(8): 6456-6494, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38574366

RESUMO

Dysregulation of IL17A drives numerous inflammatory and autoimmune disorders with inhibition of IL17A using antibodies proven as an effective treatment. Oral anti-IL17 therapies are an attractive alternative option, and several preclinical small molecule IL17 inhibitors have previously been described. Herein, we report the discovery of a novel class of small molecule IL17A inhibitors, identified via a DNA-encoded chemical library screen, and their subsequent optimization to provide in vivo efficacious inhibitors. These new protein-protein interaction (PPI) inhibitors bind in a previously undescribed mode in the IL17A protein with two copies binding symmetrically to the central cavities of the IL17A homodimer.


Assuntos
DNA , Descoberta de Drogas , Interleucina-17 , Bibliotecas de Moléculas Pequenas , Interleucina-17/metabolismo , Interleucina-17/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , DNA/metabolismo , DNA/química , Humanos , Animais , Relação Estrutura-Atividade , Ligação Proteica , Camundongos
8.
Sci Rep ; 12(1): 14561, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028520

RESUMO

Anti-IL17A therapies have proven effective for numerous inflammatory diseases including psoriasis, axial spondylitis and psoriatic arthritis. Modulating and/or antagonizing protein-protein interactions of IL17A cytokine binding to its cell surface receptors with oral therapies offers the promise to bring forward biologics-like efficacy in a pill to patients. We used an NMR-based fragment screen of recombinant IL17A to uncover starting points for small molecule IL17A antagonist discovery. By examining chemical shift perturbations in 2D [1H, 13C-HSQC] spectra of isotopically labeled IL17A, we discovered fragments binding the cytokine at a previously undescribed site near the IL17A C-terminal region, albeit with weak affinity (> 250 µM). Importantly this binding location was distinct from previously known chemical matter modulating cytokine responses. Subsequently through analog screening, we identified related compounds that bound symmetrically in this novel site with two copies. From this observation we employed a linking strategy via structure-based drug design and obtained compounds with increased binding affinity (< 50 nM) and showed functional inhibition of IL17A-induced cellular signaling (IC50~1 µM). We also describe a fluorescence-based probe molecule suitable to discern/screen for additional molecules binding in this C-terminal site.


Assuntos
Artrite Psoriásica , Espondiloartrite Axial , Interleucina-17 , Psoríase , Citocinas , Desenho de Fármacos , Humanos , Interleucina-17/antagonistas & inibidores
9.
Prog Drug Res ; 67: 107-24, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21141727

RESUMO

In Eukarya, the packaging of DNA into chromatin provides a barrier that allows for regulation of access to the genome. Chromatin is refractory to processes acting on DNA. ATP-dependent chromatin remodeling machines and histone-modifying complexes can overcome this barrier (or strengthen it in silencing processes). Both components of chromatin (DNA and histones) are subject to postsynthetic covalent modifications, including methylation of lysines (the focus of this chapter). These lysine marks are generated by a host of histone lysine methyltransferases (writers) and can be removed by histone lysine demethylases (erasers). Importantly, epigenetic modifications impact chromatin structure directly or can be read by effector regulatory modules. Here, we summarize current knowledge on structural and functional properties of various histone lysine methyltransfereases and demethylases, with emphasis on their importance as druggable targets.


Assuntos
Histona Desmetilases/química , Histona-Lisina N-Metiltransferase/química , Histonas/metabolismo , Lisina/metabolismo , Animais , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Estrutura Terciária de Proteína
10.
Biochemistry ; 48(18): 3928-35, 2009 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-19296688

RESUMO

Three TEMPO-conjugated pargyline analogues (ParSL-1, ParSL-2, and ParSL-3) have been synthesized and their inhibitory properties tested for the two human monoamine oxidase isoforms (hMAOA and hMAOB). The three analogues differ in flexibility and substituent positions (para or meta) of the linkers connecting the TEMPO group to the pargyline phenyl ring. ParSL-1 contains a flexible acetamido (-CH(2)-CO-NH-) linker connecting the two moieties at the para position. In contrast, the TEMPO moieties in ParSL-2 and ParSL-3 are attached with rigid amido (-CO-NH-) linkers to the para or meta positions of the pargyline phenyl ring, respectively. These variations in conformational flexibility and substituent position are shown to have profound effects in tuning the specificities of these analogues toward the two MAO isoforms. ParSL-1 irreversibly inhibits either MAOA and MAOB, ParSL-2 inhibits only MAOB (K(i) = 15 +/- 5 microM), and ParSL-3 is found to be specific for MAOA (K(i) = 268 +/- 72 microM). These results thus provide additional insights into the role of conformational flexibility and structural properties of MAO inhibitors in tuning their isoform specificities. These active site probes have been used to determine the topological orientation of these enzymes in the mitochondrial membrane. Studies with intact mitochondria show MAOA is topologically on the cytosolic face of the outer membrane in human placenta but recombinant MAOA is situated on the opposite inner face in Pichia mitochondria. Recombinant MAOB is found to be situated on the cytosolic face of the outer membrane in Pichia mitochondria.


Assuntos
Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/efeitos dos fármacos , Pargilina/análogos & derivados , Marcadores de Spin , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Cinética , Pargilina/química , Proteínas Recombinantes/efeitos dos fármacos , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta
11.
Biochemistry ; 48(20): 4220-30, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19371079

RESUMO

The past decade has brought major advances in our knowledge of the structures and mechanisms of MAO A and MAO B, which are pharmacological targets for specific inhibitors. In both enzymes, crystallographic and biochemical data show their respective C-terminal transmembrane helices anchor the enzymes to the outer mitochondrial membrane. Pulsed EPR data show both enzymes are dimeric in their membrane-bound forms with agreement between distances measured in their crystalline forms. Distances measured between active site-directed spin-labels in membrane preparations show excellent agreement with those estimated from crystallographic data. Our knowledge of requirements for development of specific reversible MAO B inhibitors is in a fairly mature status. Less is known regarding the structural requirements for highly specific reversible MAO A inhibitors. In spite of their 70% level of sequence identity and similarities of C(alpha) folds, the two enzymes exhibit significant functional and structural differences that can be exploited in the ultimate goal of the development of highly specific inhibitors. This review summarizes the current structural and mechanistic information available that can be utilized in the development of future highly specific neuroprotectants and cardioprotectants.


Assuntos
Mitocôndrias/metabolismo , Monoaminoxidase/química , Compostos Alílicos/farmacologia , Animais , Butilaminas/farmacologia , Membrana Celular/metabolismo , Cristalografia por Raios X/métodos , Humanos , Cinética , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Monoaminoxidase/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Ratos
12.
Biochemistry ; 47(25): 6539-51, 2008 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-18505274

RESUMO

Cytochrome c(m552) (cyt c(m552)) from the ammonia-oxidizing Nitrosomonas europaea is encoded by the cycB gene, which is preceded in a gene cluster by three genes encoding proteins involved in the oxidation of hydroxylamine: hao, hydroxylamine oxidoreductase; orf2, a putative membrane protein; cycA, cyt c(554). By amino acid sequence alignment of the core tetraheme domain, cyt c(m552) belongs to the NapC/TorC family of tetra- or pentaheme cytochrome c species involved in electron transport from membrane quinols to a variety of periplasmic electron shuttles leading to terminal reductases. However, cyt c(m552) is thought to reduce quinone with electrons originating from HAO. In this work, the tetrahemic 27 kDa cyt c(m552) from N. europaea was purified after extraction from membranes using Triton X-100 with subsequent exchange into n-dodecyl beta-d-maltoside. The cytochrome had a propensity to form strong SDS-resistant dimers likely mediated by a conserved GXXXG motif present in the putative transmembrane segment. Optical spectra of the ferric protein contained a broad ligand-metal charge transfer band at approximately 625 nm indicative of a high-spin heme. Mossbauer spectroscopy of the reduced (57)Fe-enriched protein revealed the presence of high-spin and low-spin hemes in a 1:3 ratio. Multimode EPR spectroscopy of the native state showed signals from an electronically interacting high-spin/low-spin pair of hemes. Upon partial reduction, a typical high-spin heme EPR signal was observed. No EPR signals were observed from the other two low-spin hemes, indicating an electronic interaction between these hemes as well. UV-vis absorption data indicate that CO (ferrous enzyme) or CN(-) (ferric or ferrous enzyme) bound to more than one and possibly all hemes. Other anionic ligands did not bind. The four ferrous hemes of the cytochrome were rapidly oxidized in the presence of oxygen. Comparative modeling, based on the crystal structure and conserved residues of the homologous NrfH protein from Desulfovibrio of cyt c(m552), predicted some structural elements, including a Met-ligated high-spin heme in a quinone-binding pocket, and likely axial ligands to all four hemes.


Assuntos
Amônia/metabolismo , Proteínas de Bactérias/metabolismo , Grupo dos Citocromos c/metabolismo , Nitrosomonas europaea/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Grupo dos Citocromos c/química , Grupo dos Citocromos c/genética , Espectroscopia de Ressonância de Spin Eletrônica , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Eletroforese em Gel de Poliacrilamida , Heme/química , Heme/metabolismo , Ligantes , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Nitrosomonas europaea/genética , Oxirredução , Conformação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Espectroscopia de Mossbauer
13.
Protein Expr Purif ; 59(2): 349-56, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18424170

RESUMO

The high level expression and purification of rat monoamine oxidase B (rMAOB) in the methylotrophic yeast Pichia pastoris is reported. Nearly 100 mg of purified rMAOB is obtained from 130 g (wet weight) of cells (0.5 L of culture). The MALDI-TOF mass spectrum of the purified protein shows a single species with a molecular mass of 59.228 +/- 0.064 kDa, which agrees with the calculated molecular weight of 59.172 kDa for the rMAOB protein sequence assuming one mole of covalent FAD per mole of the enzyme. Consistent with the MALDI-MS data, purified rMAOB shows a single band near 60 kDa in Coomassie-stained SDS-PAGE gel as well as on Western blot analyses performed using antisera raised against human MAOA and BSA-conjugated FAD. A partial amino acid sequence of the purified protein is confirmed to be that of the wild type rMAOB by in-gel trypsin digestion and MALDI-TOF-MS analyses of the liberated peptide fragments. Steady state kinetic data show that purified rMAOB exhibits a K(m)(amine) of 176 +/- 15 microM and a k(cat) of 497 +/- 83 min(-1) for benzylamine oxidation, and a K(m)(O2) of 170 +/- 10 microM. Kinetic parameters obtained for purified rMAOB are compared with those reported earlier for recombinant human liver MAOB expressed in P. pastoris.


Assuntos
Monoaminoxidase/química , Monoaminoxidase/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Sequência de Aminoácidos , Animais , Catálise , Membrana Celular/enzimologia , Detergentes , Eletroforese em Gel de Poliacrilamida , Cinética , Fígado/enzimologia , Dados de Sequência Molecular , Monoaminoxidase/biossíntese , Pichia/genética , Ratos , Proteínas Recombinantes/biossíntese , Análise de Sequência de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
J Med Chem ; 61(15): 6647-6657, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30004704

RESUMO

IDH1 plays a critical role in a number of metabolic processes and serves as a key source of cytosolic NADPH under conditions of cellular stress. However, few inhibitors of wild-type IDH1 have been reported. Here we present the discovery and biochemical characterization of two novel inhibitors of wild-type IDH1. In addition, we present the first ligand-bound crystallographic characterization of these novel small molecule IDH1 binding pockets. Importantly, the NADPH competitive α,ß-unsaturated enone 1 makes a unique covalent linkage through active site H315. As few small molecules have been shown to covalently react with histidine residues, these data support the potential utility of an underutilized strategy for reversible covalent small molecule design.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Histidina , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/química , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Mutação , Conformação Proteica , Relação Estrutura-Atividade
15.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 3): 116-122, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28291746

RESUMO

The rapid spread of the recent Zika virus (ZIKV) epidemic across various countries in the American continent poses a major health hazard for the unborn fetuses of pregnant women. To date, there is no effective medical intervention. The nonstructural protein 5 of Zika virus (ZIKV-NS5) is critical for ZIKV replication through the 5'-RNA capping and RNA polymerase activities present in its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent RNA polymerase (RdRp) domains, respectively. The crystal structure of the full-length ZIKV-NS5 protein has been determined at 3.05 Šresolution from a crystal belonging to space group P21212 and containing two protein molecules in the asymmetric unit. The structure is similar to that reported for the NS5 protein from Japanese encephalitis virus and suggests opportunities for structure-based drug design targeting either its MTase or RdRp domain.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/química , Proteínas não Estruturais Virais/química , Zika virus/química , Zinco/química , Motivos de Aminoácidos , Sítios de Ligação , Cátions Bivalentes , Clonagem Molecular , Cristalografia por Raios X , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Modelos Moleculares , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Zika virus/metabolismo , Zinco/metabolismo
16.
ACS Med Chem Lett ; 7(12): 1102-1106, 2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27994746

RESUMO

SETD8 is a histone H4-K20 methyltransferase that plays an essential role in the maintenance of genomic integrity during mitosis and in DNA damage repair, making it an intriguing target for cancer research. While some small molecule inhibitors for SETD8 have been reported, the structural binding modes for these inhibitors have not been revealed. Using the complex structure of the substrate peptide bound to SETD8 as a starting point, different natural and unnatural amino acid substitutions were tested, and a potent (Ki 50 nM, IC50 0.33 µM) and selective norleucine containing peptide inhibitor has been obtained.

17.
J Mol Biol ; 416(3): 319-27, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22227394

RESUMO

BIX-01294 and its analogs were originally identified and subsequently designed as potent inhibitors against histone H3 lysine 9 (H3K9) methyltransferases G9a and G9a-like protein. Here, we show that BIX-01294 and its analog E67 can also inhibit H3K9 Jumonji demethylase KIAA1718 with half-maximal inhibitory concentrations in low micromolar range. Crystallographic analysis of KIAA1718 Jumonji domain in complex with E67 indicated that the benzylated six-membered piperidine ring was disordered and exposed to solvent. Removing the moiety (generating compound E67-2) has no effect on the potency against KIAA1718 but, unexpectedly, lost inhibition against G9a-like protein by a factor of 1500. Furthermore, E67 and E67-2 have no effect on the activity against histone H3 lysine 4 (H3K4) demethylase JARID1C. Thus, our study provides a new avenue for designing and improving the potency and selectivity of inhibitors against H3K9 Jumonji demethylases over H3K9 methyltransferases and H3K4 demethylases.


Assuntos
Azepinas/farmacologia , Inibidores Enzimáticos/farmacologia , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Quinazolinas/farmacologia , Animais , Células Cultivadas , Cristalografia por Raios X , Inibidores Enzimáticos/química , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/química , Camundongos , Estrutura Terciária de Proteína
18.
J Mol Biol ; 406(1): 1-8, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21167174

RESUMO

PHF2 belongs to a class of α-ketoglutarate-Fe(2)(+)-dependent dioxygenases. PHF2 harbors a plant homeodomain (PHD) and a Jumonji domain. PHF2, via its PHD, binds Lys4-trimethylated histone 3 in submicromolar affinity and has been reported to have the demethylase activity of monomethylated lysine 9 of histone 3 in vivo. However, we did not detect demethylase activity for PHF2 Jumonji domain (with and without its linked PHD) in the context of histone peptides. We determined the crystal structures of PHF2 Jumonji domain in the absence and presence of additional exogenous metal ions. When Fe(2+) or Ni(2+) was added at a high concentration (50 mM) and allowed to soak in the preformed crystals, Fe(2+) or Ni(2+) was bound by six ligands in an octahedral coordination. The side chains of H249 and D251 and the two oxygen atoms of N-oxalylglycine (an analog of α-ketoglutarate) provide four coordinations in the equatorial plane, while the hydroxyl oxygen atom of Y321 and one water molecule provide the two axial coordinations as the fifth and sixth ligands, respectively. The metal binding site in PHF2 closely resembles the Fe(2+) sites in other Jumonji domains examined, with one important difference-a tyrosine (Y321 of PHF2) replaces histidine as the fifth ligand. However, neither Y321H mutation nor high metal concentration renders PHF2 an active demethylase on histone peptides. Wild type and Y321H mutant bind Ni(2+) with an approximately equal affinity of 50 µM. We propose that there must be other regulatory factors required for the enzymatic activity of PHF2 in vivo or that perhaps PHF2 acts on non-histone substrates. Furthermore, PHF2 shares significant sequence homology throughout the entire region, including the above-mentioned tyrosine at the corresponding iron-binding position, with that of Schizosaccharomyces pombe Epe1, which plays an essential role in heterochromatin function but has no known enzymatic activity.


Assuntos
Proteínas de Homeodomínio/química , Ferro/química , Histona Desmetilases com o Domínio Jumonji/química , Níquel/química , Sequência de Aminoácidos , Aminoácidos Dicarboxílicos/química , Domínio Catalítico/genética , Histidina/química , Proteínas de Homeodomínio/genética , Humanos , Hidróxidos/química , Histona Desmetilases com o Domínio Jumonji/genética , Dados de Sequência Molecular , Ligação Proteica/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato/genética , Tirosina/química , Água/química
19.
Curr Opin Struct Biol ; 21(6): 750-60, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21872465

RESUMO

Both components of chromatin (DNA and histones) are subjected to dynamic postsynthetic covalent modifications. Dynamic histone lysine methylation involves the activities of modifying enzymes (writers), enzymes removing modifications (erasers), and readers of the epigenetic code. Known histone lysine demethylases include flavin-dependent monoamine oxidase lysine-specific demethylase 1 and α-ketoglutarate-Fe(II)-dependent dioxygenases containing Jumonji domains. Importantly, the Jumonji domain often associates with at least one additional recognizable domain (reader) within the same polypeptide that detects the methylation status of histones and/or DNA. Here, we summarize recent developments in characterizing structural and functional properties of various histone lysine demethylases, with emphasis on a mechanism of crosstalk between a Jumonji domain and its associated reader module(s). We further discuss the role of recently identified Tet1 enzyme in oxidizing 5-methylcytosine to 5-hydroxymethylcytosine in DNA.


Assuntos
Histona Desmetilases com o Domínio Jumonji/química , Lisina/química , 5-Metilcitosina/química , 5-Metilcitosina/metabolismo , Citosina/análogos & derivados , Citosina/química , Citosina/metabolismo , DNA/química , DNA/metabolismo , Histona Desmetilases/química , Histona Desmetilases/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina/metabolismo , Metilação , Relação Estrutura-Atividade
20.
Nat Struct Mol Biol ; 18(1): 42-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21151116

RESUMO

The protein lysine methyltransferase SET7 regulates DNA methyltransferase-1 (DNMT1) activity in mammalian cells by promoting degradation of DNMT1 and thus allows epigenetic changes via DNA demethylation. Here we reveal an interplay between monomethylation of DNMT1 Lys142 by SET7 and phosphorylation of DNMT1 Ser143 by AKT1 kinase. These two modifications are mutually exclusive, and structural analysis suggests that Ser143 phosphorylation interferes with Lys142 monomethylation. AKT1 kinase colocalizes and directly interacts with DNMT1 and phosphorylates Ser143. Phosphorylated DNMT1 peaks during DNA synthesis, before DNMT1 methylation. Depletion of AKT1 or overexpression of dominant-negative AKT1 increases methylated DNMT1, resulting in a decrease in DNMT1 abundance. In mammalian cells, phosphorylated DNMT1 is more stable than methylated DNMT1. These results reveal cross-talk on DNMT1, through modifications mediated by AKT1 and SET7, that affects cellular DNMT1 levels.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Cristalografia por Raios X , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/química , Metilação de DNA , Genoma Humano , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/fisiologia , Humanos , Lisina/metabolismo , Metilação , Modelos Moleculares , Fosforilação , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/fisiologia , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA