Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
BMC Plant Biol ; 24(1): 278, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609866

RESUMO

BACKGROUND: The availability of soil phosphorus (P) often limits the productivities of wet tropical lowland forests. Little is known, however, about the metabolomic profile of different chemical P compounds with potentially different uses and about the cycling of P and their variability across space under different tree species in highly diverse tropical rainforests. RESULTS: We hypothesised that the different strategies of the competing tree species to retranslocate, mineralise, mobilise, and take up P from the soil would promote distinct soil 31P profiles. We tested this hypothesis by performing a metabolomic analysis of the soils in two rainforests in French Guiana using 31P nuclear magnetic resonance (NMR). We analysed 31P NMR chemical shifts in soil solutions of model P compounds, including inorganic phosphates, orthophosphate mono- and diesters, phosphonates, and organic polyphosphates. The identity of the tree species (growing above the soil samples) explained > 53% of the total variance of the 31P NMR metabolomic profiles of the soils, suggesting species-specific ecological niches and/or species-specific interactions with the soil microbiome and soil trophic web structure and functionality determining the use and production of P compounds. Differences at regional and topographic levels also explained some part of the the total variance of the 31P NMR profiles, although less than the influence of the tree species. Multivariate analyses of soil 31P NMR metabolomics data indicated higher soil concentrations of P biomolecules involved in the active use of P (nucleic acids and molecules involved with energy and anabolism) in soils with lower concentrations of total soil P and higher concentrations of P-storing biomolecules in soils with higher concentrations of total P. CONCLUSIONS: The results strongly suggest "niches" of soil P profiles associated with physical gradients, mostly topographic position, and with the specific distribution of species along this gradient, which is associated with species-specific strategies of soil P mineralisation, mobilisation, use, and uptake.


Assuntos
Microbiota , Fósforo , Floresta Úmida , Árvores , Guiana Francesa , Fosfatos , Solo
2.
Plant Cell Environ ; 47(5): 1769-1781, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38314642

RESUMO

Stomata play a pivotal role in regulating gas exchange between plants and the atmosphere controlling water and carbon cycles. Accordingly, we investigated the impact of ultraviolet-B radiation, a neglected environmental factor varying with ongoing global change, on stomatal morphology and function by a Comprehensive Meta-Analysis. The overall UV effect at the leaf level is to decrease stomatal conductance, stomatal aperture and stomatal size, although stomatal density was increased. The significant decline in stomatal conductance is marked (6% in trees and >10% in grasses and herbs) in short-term experiments, with more modest decreases noted in long-term UV studies. Short-term experiments in growth chambers are not representative of long-term field UV effects on stomatal conductance. Important consequences of altered stomatal function are hypothesized. In the short term, UV-mediated stomatal closure may reduce carbon uptake but also water loss through transpiration, thereby alleviating deleterious effects of drought. However, in the long term, complex changes in stomatal aperture, size, and density may reduce the carbon sequestration capacity of plants and increase vegetation and land surface temperatures, potentially exacerbating negative effects of drought and/or heatwaves. Therefore, the expected future strength of carbon sink capacity in high-UV regions is likely overestimated.


Assuntos
Estômatos de Plantas , Raios Ultravioleta , Estômatos de Plantas/fisiologia , Ecossistema , Folhas de Planta/fisiologia , Água/fisiologia , Plantas , Transpiração Vegetal/fisiologia
3.
Plant Cell Environ ; 45(1): 41-54, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34778989

RESUMO

Interactions between climate change and UV penetration in the biosphere are resulting in the exposure of plants to new combinations of UV radiation and drought. In theory, the impacts of combinations of UV and drought may be additive, synergistic or antagonistic. Lack of understanding of the impacts of combined treatments creates substantial uncertainties that hamper predictions of future ecological change. Here, we compiled information from 52 publications and analysed the relative impacts of UV and/or drought. Both UV and drought have substantial negative effects on biomass accumulation, plant height, photosynthesis, leaf area and stomatal conductance and transpiration, while increasing stress-associated symptoms such as MDA accumulation and reactive-oxygen-species content. Contents of proline, flavonoids, antioxidants and anthocyanins, associated with plant acclimation, are upregulated both under enhanced UV and drought. In plants exposed to both UV and drought, increases in plant defense responses are less-than-additive, and so are the damage and growth retardation. Less-than-additive effects were observed across field, glasshouse and growth-chamber studies, indicating similar physiological response mechanisms. Induction of a degree of cross-resistance seems the most likely interpretation of the observed less-than-additive responses. The data show that in future climates, the impacts of increases in drought exposure may be lessened by naturally high UV regimes.


Assuntos
Aclimatação , Secas , Fenômenos Fisiológicos Vegetais , Raios Ultravioleta , Aclimatação/fisiologia , Biomassa , Fotossíntese , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais/efeitos da radiação , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia
4.
Plant Cell Environ ; 44(11): 3655-3666, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34486744

RESUMO

Mistletoe-host systems exemplify an intimate and chronic relationship where mistletoes represent protracted stress for hosts, causing long-lasting impact. Although host changes in morphological and reproductive traits due to parasitism are well known, shifts in their physiological system, altering metabolite concentrations, are less known due to the difficulty of quantification. Here, we use ecometabolomic techniques in the plant-plant interaction, comparing the complete metabolome of the leaves from mistletoe (Viscum album) and needles from their host (Pinus nigra), both parasitized and unparasitized, to elucidate host responses to plant parasitism. Our results show that mistletoe acquires metabolites basically from the primary metabolism of its host and synthesizes its own defence compounds. In response to mistletoe parasitism, pines modify a quarter of their metabolome over the year, making the pine canopy metabolome more homogeneous by reducing the seasonal shifts in top-down stratification. Overall, host pines increase antioxidant metabolites, suggesting oxidative stress, and also increase part of the metabolites required by mistletoe, which act as a permanent sink of host resources. In conclusion, by exerting biotic stress and thereby causing permanent systemic change, mistletoe parasitism generates a new host-plant metabolic identity available in forest canopy, which could have notable ecological consequences in the forest ecosystem.


Assuntos
Interações Hospedeiro-Parasita , Metaboloma , Pinus/metabolismo , Viscum album/fisiologia , Florestas , Pinus/parasitologia , Espanha
5.
Molecules ; 25(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32877991

RESUMO

Productivity of tropical lowland moist forests is often limited by availability and functional allocation of phosphorus (P) that drives competition among tree species and becomes a key factor in determining forestall community diversity. We used non-target 31P-NMR metabolic profiling to study the foliar P-metabolism of trees of a French Guiana rainforest. The objective was to test the hypotheses that P-use is species-specific, and that species diversity relates to species P-use and concentrations of P-containing compounds, including inorganic phosphates, orthophosphate monoesters and diesters, phosphonates and organic polyphosphates. We found that tree species explained the 59% of variance in 31P-NMR metabolite profiling of leaves. A principal component analysis showed that tree species were separated along PC 1 and PC 2 of detected P-containing compounds, which represented a continuum going from high concentrations of metabolites related to non-active P and P-storage, low total P concentrations and high N:P ratios, to high concentrations of P-containing metabolites related to energy and anabolic metabolism, high total P concentrations and low N:P ratios. These results highlight the species-specific use of P and the existence of species-specific P-use niches that are driven by the distinct species-specific position in a continuum in the P-allocation from P-storage compounds to P-containing molecules related to energy and anabolic metabolism.


Assuntos
Metaboloma , Metabolômica , Fósforo/metabolismo , Floresta Úmida , Árvores/metabolismo , Guiana Francesa , Folhas de Planta/metabolismo , Especificidade da Espécie
6.
Photosynth Res ; 139(1-3): 123-143, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30306531

RESUMO

Cold acclimation modifies the photosynthetic machinery and enables plants to survive at sub-zero temperatures, whereas in warm habitats, many species suffer even at non-freezing temperatures. We have measured chlorophyll a fluorescence (ChlF) and CO2 assimilation to investigate the effects of cold acclimation, and of low temperatures, on a cold-sensitive Arabidopsis thaliana accession C24. Upon excitation with low intensity (40 µmol photons m- 2 s- 1) ~ 620 nm light, slow (minute range) ChlF transients, at ~ 22 °C, showed two waves in the SMT phase (S, semi steady-state; M, maximum; T, terminal steady-state), whereas CO2 assimilation showed a linear increase with time. Low-temperature treatment (down to - 1.5 °C) strongly modulated the SMT phase and stimulated a peak in the CO2 assimilation induction curve. We show that the SMT phase, at ~ 22 °C, was abolished when measured under high actinic irradiance, or when 3-(3, 4-dichlorophenyl)-1, 1- dimethylurea (DCMU, an inhibitor of electron flow) or methyl viologen (MV, a Photosystem I (PSI) electron acceptor) was added to the system. Our data suggest that stimulation of the SMT wave, at low temperatures, has multiple reasons, which may include changes in both photochemical and biochemical reactions leading to modulations in non-photochemical quenching (NPQ) of the excited state of Chl, "state transitions," as well as changes in the rate of cyclic electron flow through PSI. Further, we suggest that cold acclimation, in accession C24, promotes "state transition" and protects photosystems by preventing high excitation pressure during low-temperature exposure.


Assuntos
Arabidopsis/metabolismo , Fotossíntese/fisiologia , Aclimatação , Clorofila A/metabolismo , Temperatura Baixa , Temperatura
7.
Int J Mol Sci ; 20(1)2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30586850

RESUMO

Many studies have addressed several plant-insect interaction topics at nutritional, molecular, physiological, and evolutionary levels. However, it is still unknown how flexible the metabolism and the nutritional content of specialist insect herbivores feeding on different closely related plants can be. We performed elemental, stoichiometric, and metabolomics analyses on leaves of two coexisting Pinus sylvestris subspecies and on their main insect herbivore; the caterpillar of the processionary moth (Thaumetopoea pityocampa). Caterpillars feeding on different pine subspecies had distinct overall metabolome structure, accounting for over 10% of the total variability. Although plants and insects have very divergent metabolomes, caterpillars showed certain resemblance to their plant-host metabolome. In addition, few plant-related secondary metabolites were found accumulated in caterpillar tissues which could potentially be used for self-defense. Caterpillars feeding on N and P richer needles had lower N and P tissue concentration and higher C:N and C:P ratios, suggesting that nutrient transfer is not necessarily linear through trophic levels and other plant-metabolic factors could be interfering. This exploratory study showed that little chemical differences between plant food sources can impact the overall metabolome of specialist insect herbivores. Significant nutritional shifts in herbivore tissues could lead to larger changes of the trophic web structure.


Assuntos
Metaboloma , Metabolômica , Mariposas/fisiologia , Pinus sylvestris/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Comportamento Alimentar , Herbivoria , Interações Hospedeiro-Parasita , Larva/química , Larva/fisiologia , Espectrometria de Massas , Mariposas/crescimento & desenvolvimento , Nitrogênio/análise , Fósforo/análise , Pinus sylvestris/parasitologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Análise de Componente Principal , Especificidade da Espécie
8.
Plant Cell Environ ; 40(11): 2790-2805, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28792065

RESUMO

A 2-year study explored metabolic and phenotypic plasticity of sun-acclimated Vitis vinifera cv. Pinot noir leaves collected from 12 locations across a 36.69-49.98°N latitudinal gradient. Leaf morphological and biochemical parameters were analysed in the context of meteorological parameters and the latitudinal gradient. We found that leaf fresh weight and area were negatively correlated with both global and ultraviolet (UV) radiation, cumulated global radiation being a stronger correlator. Cumulative UV radiation (sumUVR) was the strongest correlator with most leaf metabolites and pigments. Leaf UV-absorbing pigments, total antioxidant capacities, and phenolic compounds increased with increasing sumUVR, whereas total carotenoids and xanthophylls decreased. Despite of this reallocation of metabolic resources from carotenoids to phenolics, an increase in xanthophyll-cycle pigments (the sum of the amounts of three xanthophylls: violaxanthin, antheraxanthin, and zeaxanthin) with increasing sumUVR indicates active, dynamic protection for the photosynthetic apparatus. In addition, increased amounts of flavonoids (quercetin glycosides) and constitutive ß-carotene and α-tocopherol pools provide antioxidant protection against reactive oxygen species. However, rather than a continuum of plant acclimation responses, principal component analysis indicates clusters of metabolic states across the explored 1,500-km-long latitudinal gradient. This study emphasizes the physiological component of plant responses to latitudinal gradients and reveals the physiological plasticity that may act to complement genetic adaptations.


Assuntos
Clima , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Vitis/anatomia & histologia , Vitis/fisiologia , Absorção de Radiação , Antioxidantes/metabolismo , Biomassa , Carotenoides/análise , Europa (Continente) , Geografia , Metaboloma , Fenóis/análise , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Análise de Componente Principal , Raios Ultravioleta , Vitis/metabolismo , Vitis/efeitos da radiação , Xantofilas/análise , alfa-Tocoferol/análise
9.
Photosynth Res ; 130(1-3): 357-371, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27154572

RESUMO

Recently, we have found that thermal stability of photosystem II (PSII) photochemistry in spruce needles is higher than in other plants (barley, beech) cultivated under the same temperatures. In this work, temperature dependences of various characteristics of PSII organization were studied in order to obtain complex information on the thermal stability of PSII function and organization in spruce. Temperature dependency of circular dichroism spectra revealed by about 6 °C higher thermal stability of macrodomain organization in spruce thylakoid membranes in comparison with Arabidopsis and barley ones; however, thermal disintegration of light-harvesting complex of PSII did not significantly differ among the species studied. These results thus indicate that thermal stability of PSII macro-organization in spruce thylakoid membranes is enhanced to a similar extent as thermal stability of PSII photochemistry. Clear-native polyacrylamide gel electrophoresis of preheated thylakoids demonstrated that among the separated pigment-protein complexes, only PSII supercomplexes (SCs) revealed considerably higher thermal stability in spruce thylakoids as compared to Arabidopsis and barley ones. Hence we suggest that higher thermal stability of PSII macro-organization of spruce is influenced by the maintenance of PSII SCs in the thylakoid membrane. In addition, we discuss possible effects of different PSII organizations and lipid compositions on the thermal stability of spruce thylakoid membranes.


Assuntos
Picea/citologia , Tilacoides/fisiologia , Arabidopsis/citologia , Arabidopsis/fisiologia , Clorofila/fisiologia , Clorofila A , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Fluorescência , Hordeum/citologia , Hordeum/fisiologia , Temperatura Alta , Complexo de Proteína do Fotossistema II/fisiologia , Picea/fisiologia
10.
New Phytol ; 207(3): 591-603, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25772030

RESUMO

Plants in natural environments are increasingly being subjected to a combination of abiotic stresses, such as drought and warming, in many regions. The effects of each stress and the combination of stresses on the functioning of shoots and roots have been studied extensively, but little is known about the simultaneous metabolome responses of the different organs of the plant to different stresses acting at once. We studied the shift in metabolism and elemental composition of shoots and roots of two perennial grasses, Holcus lanatus and Alopecurus pratensis, in response to simultaneous drought and warming. These species responded differently to individual and simultaneous stresses. These responses were even opposite in roots and shoots. In plants exposed to simultaneous drought and warming, terpenes, catechin and indole acetic acid accumulated in shoots, whereas amino acids, quinic acid, nitrogenous bases, the osmoprotectants choline and glycine betaine, and elements involved in growth (nitrogen, phosphorus and potassium) accumulated in roots. Under drought, warming further increased the allocation of primary metabolic activity to roots and changed the composition of secondary metabolites in shoots. These results highlight the plasticity of plant metabolomes and stoichiometry, and the different complementary responses of shoots and roots to complex environmental conditions.


Assuntos
Secas , Holcus/metabolismo , Temperatura Alta , Metabolômica , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Poaceae/metabolismo , Análise Discriminante , Elementos Químicos , Análise dos Mínimos Quadrados , Metaboloma , Análise de Componente Principal , Estações do Ano , Especificidade da Espécie
11.
Plant Cell Environ ; 38(5): 856-66, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24890713

RESUMO

There is a need to reappraise the effects of UV-B radiation on plant morphology in light of improved mechanistic understanding of UV-B effects, particularly elucidation of the UV RESISTANCE LOCUS 8 (UVR8) photoreceptor. We review responses at cell and organismal levels, and explore their underlying regulatory mechanisms, function in UV protection and consequences for plant fitness. UV-induced morphological changes include thicker leaves, shorter petioles, shorter stems, increased axillary branching and altered root:shoot ratios. At the cellular level, UV-B morphogenesis comprises changes in cell division, elongation and/or differentiation. However, notwithstanding substantial new knowledge of molecular, cellular and organismal UV-B responses, there remains a clear gap in our understanding of the interactions between these organizational levels, and how they control plant architecture. Furthermore, despite a broad consensus that UV-B induces relatively compact architecture, we note substantial diversity in reported phenotypes. This may relate to UV-induced morphological changes being underpinned by different mechanisms at high and low UV-B doses. It remains unproven whether UV-induced morphological changes have a protective function involving shading and decreased leaf penetration of UV-B, counterbalancing trade-offs such as decreased photosynthetic light capture and plant-competitive abilities. Future research will need to disentangle seemingly contradictory interactions occurring at the threshold UV dose where regulation and stress-induced morphogenesis overlap.


Assuntos
Plantas/efeitos da radiação , Raios Ultravioleta , Flavonoides/metabolismo , Morfogênese/efeitos da radiação , Fenótipo
12.
Ann Bot ; 116(6): 929-39, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25851132

RESUMO

BACKGROUND AND AIMS: Plants growing under elevated atmospheric CO2 concentrations often have reduced stomatal conductance and subsequently increased leaf temperature. This study therefore tested the hypothesis that under long-term elevated CO2 the temperature optima of photosynthetic processes will shift towards higher temperatures and the thermostability of the photosynthetic apparatus will increase. METHODS: The hypothesis was tested for saplings of broadleaved Fagus sylvatica and coniferous Picea abies exposed for 4-5 years to either ambient (AC; 385 µmol mol(-1)) or elevated (EC; 700 µmol mol(-1)) CO2 concentrations. Temperature response curves of photosynthetic processes were determined by gas-exchange and chlorophyll fluorescence techniques. KEY RESULTS: Initial assumptions of reduced light-saturated stomatal conductance and increased leaf temperatures for EC plants were confirmed. Temperature response curves revealed stimulation of light-saturated rates of CO2 assimilation (Amax) and a decline in photorespiration (RL) as a result of EC within a wide temperature range. However, these effects were negligible or reduced at low and high temperatures. Higher temperature optima (Topt) of Amax, Rubisco carboxylation rates (VCmax) and RL were found for EC saplings compared with AC saplings. However, the shifts in Topt of Amax were instantaneous, and disappeared when measured at identical CO2 concentrations. Higher values of Topt at elevated CO2 were attributed particularly to reduced photorespiration and prevailing limitation of photosynthesis by ribulose-1,5-bisphosphate (RuBP) regeneration. Temperature response curves of fluorescence parameters suggested a negligible effect of EC on enhancement of thermostability of photosystem II photochemistry. CONCLUSIONS: Elevated CO2 instantaneously increases temperature optima of Amax due to reduced photorespiration and limitation of photosynthesis by RuBP regeneration. However, this increase disappears when plants are exposed to identical CO2 concentrations. In addition, increased heat-stress tolerance of primary photochemistry in plants grown at elevated CO2 is unlikely. The hypothesis that long-term cultivation at elevated CO2 leads to acclimation of photosynthesis to higher temperatures is therefore rejected. Nevertheless, incorporating acclimation mechanisms into models simulating carbon flux between the atmosphere and vegetation is necessary.


Assuntos
Dióxido de Carbono/farmacologia , Fotossíntese/efeitos dos fármacos , Picea/efeitos dos fármacos , Plântula/efeitos dos fármacos , Aclimatação , Clorofila/metabolismo , Luz , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Picea/fisiologia , Picea/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulosefosfatos , Plântula/fisiologia , Plântula/efeitos da radiação , Temperatura
13.
New Phytol ; 202(3): 874-885, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24443979

RESUMO

At the molecular level, folivory activity on plants has mainly been related to the foliar concentrations of nitrogen (N) and/or particular metabolites. We studied the responses of different nutrients and the whole metabolome of Quercus ilex to seasonal changes and to moderate field experimental conditions of drought, and how this drought may affect folivory activity, using stoichiometric and metabolomic techniques. Foliar potassium (K) concentrations increased in summer and consequently led to higher foliar K : phosphorus (P) and lower carbon (C) : K and N : K ratios. Foliar N : P ratios were not lowest in spring as expected by the growth rate hypothesis. Trees exposed to moderate drought presented higher concentrations of total sugars and phenolics and these trees also experienced more severe folivory attack. The foliar increases in K, sugars and antioxidant concentrations in summer, the driest Mediterranean season, indicated enhanced osmoprotection under natural drought conditions. Trees under moderate drought also presented higher concentrations of sugars and phenolics; a plant response to avoid water loss. These shifts in metabolism produced an indirect relationship between increased drought and folivory activity.


Assuntos
Secas , Herbivoria/fisiologia , Metaboloma , Folhas de Planta/metabolismo , Quercus/fisiologia , Árvores/fisiologia , Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Análise Discriminante , Análise dos Mínimos Quadrados , Metabolômica , Modelos Biológicos , Polifenóis/metabolismo , Análise de Componente Principal , Estações do Ano , Espanha
14.
Plants (Basel) ; 13(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38999586

RESUMO

In plants, secondary metabolites change in response to environmental conditions. These changes co-regulate resilience to stressful environmental conditions, plant growth and development, and interactions between plants and the wider ecosystem, while also affecting soil carbon storage and atmospheric and climatic conditions. The objective of this study was to determine the association between UV exposure and the contents of key metabolites, including amino acids, phenolics, flavonoids, terpenoids, carotenoids, tocopherols, and phytosterols. Mentha spicata plantlets were grown in tissue culture boxes for 30 days and then exposed to a low dose of broadband UV-B (291-315 nm; 2.8 kJm-2 biologically effective UV) enriched light for eight days. Metabolite contents were quantified either immediately after the final UV exposure, or after seven days of recovery under photosynthetically active radiation. It was found that UV promoted the production of flavonoids (1.8-fold) ahead of phenolic acids (unchanged). Furthermore, the majority of monoterpenes and sesquiterpenes, constituents of valuable mint essential oil, were significantly increased through UV treatment (up to 90-fold for α-linalool). In contrast, the contents of carotenoids and tocopherols did not increase following UV exposure. A comparison between plants sampled immediately after UV exposure and after seven days of recovery showed that there was an overall increase in the content of carotenoids, mono- and sesquiterpenes, phenolics, and amino acids following recovery, while the contents of sterols and tocopherols decreased. These UV-induced changes in metabolite profile may have important consequences for agriculture, ecology, and even the global climate, and they also provide an exciting opportunity to enhance crop value, facilitating the development of improved products with higher levels of essential oils and added benefits of enhanced flavour, colour, and bioactive content.

15.
Front Plant Sci ; 15: 1345462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371407

RESUMO

This study examined the effect of the interactions of key factors associated with predicted climate change (increased temperature, and drought) and elevated CO2 concentration on C3 and C4 crop representatives, barley and sorghum. The effect of two levels of atmospheric CO2 concentration (400 and 800 ppm), three levels of temperature regime (21/7, 26/12 and 33/19°C) and two regimes of water availability (simulation of drought by gradual reduction of irrigation and well-watered control) in all combinations was investigated in a pot experiment within growth chambers for barley variety Bojos and sorghum variety Ruby. Due to differences in photosynthetic metabolism in C3 barley and C4 sorghum, leading to different responses to elevated CO2 concentration, we hypothesized mitigation of the negative drought impact in barley under elevated CO2 concentration and, conversely, improved performance of sorghum at high temperatures. The results demonstrate the decoupling of photosynthetic CO2 assimilation and production parameters in sorghum. High temperatures and elevated CO2 concentration resulted in a significant increase in sorghum above- and below-ground biomass under sufficient water availability despite the enhanced sensitivity of photosynthesis to high temperatures. However, the negative effect of drought is amplified by the effect of high temperature, similarly for biomass and photosynthetic rates. Sorghum also showed a mitigating effect of elevated CO2 concentration on the negative drought impact, particularly in reducing the decrease of relative water content in leaves. In barley, no significant factor interactions were observed, indicating the absence of mitigating the negative drought effects by elevated CO2 concentration. These complex interactions imply that, unlike barley, sorghum can be predicted to have a much higher variability in response to climate change. However, under conditions combining elevated CO2 concentration, high temperature, and sufficient water availability, the outperforming of C4 crops can be expected. On the contrary, the C3 crops can be expected to perform even better under drought conditions when accompanied by lower temperatures.

16.
Tree Physiol ; 44(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864558

RESUMO

Carbon dioxide sequestration from the atmosphere is commonly assessed using the eddy covariance method. Its net flux signal can be decomposed into gross primary production and ecosystem respiration components, but these have seldom been tested against independent methods. In addition, eddy covariance lacks the ability to partition carbon sequestration among individual trees or species within mixed forests. Therefore, we compared gross primary production from eddy covariance versus an independent method based on sap flow and water-use efficiency, as measured by the tissue heat balance method and δ13C of phloem contents, respectively. The latter measurements were conducted on individual trees throughout a growing season in a mixed broadleaf forest dominated by three tree species, namely English oak, narrow-leaved ash and common hornbeam (Quercus robur L., Fraxinus angustifolia Vahl, and Carpinus betulus L., respectively). In this context, we applied an alternative ecophysiological method aimed at verifying the accuracy of a state-of-the-art eddy covariance system while also offering a solution to the partitioning problem. We observed strong agreement in the ecosystem gross primary production estimates (R2 = 0.56; P < 0.0001), with correlation being especially high and nearly on the 1:1 line in the period before the end of July (R2 = 0.85; P < 0.0001). After this period, the estimates of gross primary production began to diverge. Possible reasons for the divergence are discussed, focusing especially on phenology and the limitation of the isotopic data. English oak showed the highest per-tree daily photosynthetic rates among tree species, but the smaller, more abundant common hornbeam contributed most to the stand-level summation, especially early in the spring. These findings provide a rigorous test of the methods and the species-level photosynthesis offers avenues for enhancing forest management aimed at carbon sequestration.


Assuntos
Florestas , Fotossíntese , Árvores , Fotossíntese/fisiologia , Árvores/fisiologia , Quercus/fisiologia , Quercus/metabolismo , Sequestro de Carbono , Fraxinus/fisiologia , Fraxinus/metabolismo
17.
Sci Total Environ ; 921: 171173, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401718

RESUMO

The efficiency of water use in plants, a critical ecophysiological parameter closely related to water and carbon cycles, is essential for understanding the interactions between plants and their environment. This study investigates the effects of ongoing climate change and increasing atmospheric CO2 concentration on intrinsic (stomata-based; iWUE) and evaporative (transpiration-based; eWUE) water use efficiency in oak trees along a naturally small altitudinal gradient (130-630 m a.s.l.) of Vihorlat Mountains (eastern Slovakia, Central Europe). To assess changes in iWUE and eWUE values over the past 60 years (1961-2020), stable carbon isotope ratios in latewood cellulose (δ13Ccell) of annually resolved tree rings were analyzed. Such an approach was sensitive enough to distinguish tree responses to growth environments at different altitudes. Our findings revealed a rising trend in iWUE, particularly in oak trees at low and middle altitudes. However, this increase was negligible at high altitudes. Warmer and drier conditions at lower altitudes likely led to significant stomatal closure and enhanced efficiency in photosynthetic CO2 uptake due to rising CO2 concentration. Conversely, the increasing intracellular-to-ambient CO2 ratio (Ci/Ca) at higher altitudes indicated lower efficiency in photosynthetic CO2 uptake. In contrast to iWUE, eWUE showed no increasing trends over the last 60 years. This suggests that the positive impacts of elevated CO2 concentrations and temperature on photosynthesis and stomatal closure are counteracted by the rising atmospheric vapor pressure deficit (VPD). These differences underscore the importance of the correct interpretation of stomata-based and transpiration-based WUEs and highlight the necessity of atmospheric VPD correction when applying tree-ring δ13C-derived WUE at ecosystem and global levels.


Assuntos
Dióxido de Carbono , Ecossistema , Dióxido de Carbono/farmacologia , Temperatura , Pressão de Vapor , Gases , Fotossíntese , Isótopos de Carbono/análise , Água
18.
J Exp Bot ; 64(7): 1817-27, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23564955

RESUMO

A dedicated field experiment was conducted to investigate the response of a green reflectance continuum removal-based optical index, called area under the curve normalized to maximal band depth between 511 nm and 557 nm (ANMB511-557), to light-induced transformations in xanthophyll cycle pigments of Norway spruce [Picea abies (L.) Karst] needles. The performance of ANMB511-557 was compared with the photochemical reflectance index (PRI) computed from the same leaf reflectance measurements. Needles of four crown whorls (fifth, eighth, 10th, and 15th counted from the top) were sampled from a 27-year-old spruce tree throughout a cloudy and a sunny day. Needle optical properties were measured together with the composition of the photosynthetic pigments to investigate their influence on both optical indices. Analyses of pigments showed that the needles of the examined whorls varied significantly in chlorophyll content and also in related pigment characteristics, such as the chlorophyll/carotenoid ratio. The investigation of the ANMB511-557 diurnal behaviour revealed that the index is able to follow the dynamic changes in the xanthophyll cycle independently of the actual content of foliar pigments. Nevertheless, ANMB511-557 lost the ability to predict the xanthophyll cycle behaviour during noon on the sunny day, when the needles were exposed to irradiance exceeding 1000 µmol m(-2) s(-1). Despite this, ANMB511-557 rendered a better performance for tracking xanthophyll cycle reactions than PRI. Although declining PRI values generally responded to excessive solar irradiance, they were not able to predict the actual de-epoxidation state in the needles examined.


Assuntos
Picea/metabolismo , Folhas de Planta/metabolismo , Xantofilas/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Fotossíntese/fisiologia , Picea/fisiologia , Folhas de Planta/fisiologia
19.
Physiol Plant ; 149(4): 528-39, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23550566

RESUMO

Plants in the field are commonly exposed to fluctuating light intensity, caused by variable cloud cover, self-shading of leaves in the canopy and/or leaf movement due to turbulence. In contrast to C3 plant species, only little is known about the effects of dynamic light (DL) on photosynthesis and growth in C4 plants. Two C4 and two C3 monocot and eudicot species were grown under steady light or DL conditions with equal sum of daily incident photon flux. We measured leaf gas exchange, plant growth and dry matter carbon isotope discrimination to infer CO2 bundle sheath leakiness in C4 plants. The growth of all species was reduced by DL, despite only small changes in steady-state gas exchange characteristics, and this effect was more pronounced in C4 than C3 species due to lower assimilation at light transitions. This was partially attributed to increased bundle sheath leakiness in C4 plants under the simulated lightfleck conditions. We hypothesize that DL leads to imbalances in the coordination of C4 and C3 cycles and increasing leakiness, thereby decreasing the quantum efficiency of photosynthesis. In addition to their other constraints, the inability of C4 plants to efficiently utilize fluctuating light likely contributes to their absence in such environments as forest understoreys.


Assuntos
Amaranthaceae/fisiologia , Dióxido de Carbono/metabolismo , Fotossíntese , Poaceae/fisiologia , Amaranthaceae/crescimento & desenvolvimento , Amaranthaceae/efeitos da radiação , Isótopos de Carbono/análise , Luz , Fótons , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Transpiração Vegetal , Poaceae/crescimento & desenvolvimento , Poaceae/efeitos da radiação
20.
Sci Total Environ ; 898: 166386, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37597564

RESUMO

We conducted year-long measurements of the photochemical reflectance index (PRI) and solar-induced fluorescence in the O2A oxygen band (SIFA) at a Norway spruce forest and a European beech forest to study relationships of these remote sensing variables to photosynthesis by trees in grown forest stands. Measured PRI and SIFA values were linked to changes in forest gross primary productivity (GPP) and light-use efficiency (LUE). Changes in the shadow fraction (αS) within tree crowns influenced PRI and fluorescence signals. In the spruce forest, the quantum yield of SIFA (FYSIFA) decreased around midday together with photosynthesis and GPP. Such decreases in FYSIFA were accompanied by an increase in the αS. In the beech forest, we detected an increase in FYSIFA together with a decrease in αS in the afternoon hours. The overall sensitivity of PRI to LUE was variable according to the season, presumably influenced by complex changes in photosynthetic pigments. PRI and FYSIFA showed weak correlations with canopy LUE; however, when considered together, the correlation was strengthened (R2 was 0.63 and 0.34 in spruce and beech forest, respectively). Our model predicting LUE dynamics includes a diurnal minimum of PRI and canopy αS to make allowances for seasonal changes in photosynthetic pigments and for diurnal variability of the shadow fraction in forests. The incorporation of these correcting factors allowed us to estimate LUE at R2 = 0.68 (spruce) and 0.53 (beech). The modeling equations appeared sensitive to the absorbed photosynthetically active radiation (APAR), but less sensitive to the GPP of these forests. Substituting pigments correction with introducing differential PRI (ΔPRI) into the model did not significantly improve the LUE estimation across the season. Our results show that the joint use of PRI and fluorescence improves LUE and GPP estimation accuracy in both daily and seasonal observations.


Assuntos
Fagus , Picea , Fotossíntese , Florestas , Luz Solar , Árvores , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA