RESUMO
Species delineation in microorganisms is challenging due to the limited markers available for accurate species assignment. Here, we applied an integrative taxonomy approach, combining extensive sampling, whole-genome sequence-based classification, phenotypic profiling, and assessment of interspecific reproductive isolation. Our work reveals the presence of a distinct Saccharomyces lineage in Nothofagus forests of coastal Patagonia. This lineage, designated Saccharomyces chiloensis sp. nov., exhibits 7% genetic divergence from its sister species S. uvarum, as revealed by whole-genome sequencing and population analyses. The South America-C (SA-C) coastal Patagonia population forms a unique clade closely related to a previously described divergent S. uvarum population from Oceania (AUS, found in Australia and New Zealand). Our species reclassification is supported by a low Ortho Average Nucleotide Identity (OANI) of 93% in SA-C and AUS relative to S. uvarum, which falls below the suggested species delineation threshold of 95%, indicating an independent evolutionary lineage. Hybrid spore viability assessment provided compelling evidence that SA-C and AUS are reproductively isolated from S. uvarum. In addition, we found unique structural variants between S. chiloensis sp. nov. lineages, including large-scale chromosomal translocations and inversions, together with a distinct phenotypic profile, emphasizing their intraspecies genetic distinctiveness. We suggest that S. chiloensis sp. nov diverged from S. uvarum in allopatry due to glaciation, followed by post-glacial dispersal, resulting in distinct lineages on opposite sides of the Pacific Ocean. The discovery of S. chiloensis sp. nov. illustrates the uniqueness of Patagonia's coastal biodiversity and underscores the importance of adopting an integrative taxonomic approach in species delineation to unveil cryptic microbial species. The holotype of S. chiloensis sp. nov. is CBS 18620T.
Assuntos
Filogenia , Saccharomyces , Saccharomyces/genética , Saccharomyces/classificação , Sequenciamento Completo do Genoma , Isolamento ReprodutivoRESUMO
In this study, we describe Nakazawaea atacamensis f. a., sp. nov., a novel species obtained from Neltuma chilensis plant samples in Chile's hyperarid Atacama Desert. In total, three strains of N. atacamensis were obtained from independent N. chilensis samples (synonym Prosopis chilensis, Algarrobo). Two strains were obtained from bark samples, while the third strain was obtained from bark-exuded gum from another tree. The novel species was defined using molecular characteristics and subsequently characterized with respect to morphological, physiological, and biochemical properties. A neighbor-joining analysis using the sequences of the D1/D2 domains of the large subunit ribosomal RNA gene revealed that N. atacamensis clustered with Nakazawaea pomicola. The sequence of N. atacamensis differed from closely related species by 1.3%-5.2% in the D1/D2 domains. A phylogenomic analysis based on single-nucleotide polymorphism's data confirms that the novel species belongs to the genus Nakazawaea, where N. atacamensis clustered with N. peltata. Phenotypic comparisons demonstrated that N. atacamensis exhibited distinct carbon assimilation patterns compared to its related species. Genome sequencing of the strain ATA-11A-BT revealed a genome size of approximately 12.4 Mbp, similar to other Nakazawaea species, with 5116 protein-coding genes annotated using InterProScan. In addition, N. atacamensis exhibited the capacity to ferment synthetic wine must, representing a potential new yeast for mono or co-culture wine fermentations. This comprehensive study expands our understanding of the genus Nakazawaea and highlights the ecological and industrial potential of N. atacamensis in fermentation processes. The holotype of N. atacamensis sp. nov. is CBS 18375T . The Mycobank number is MB 849680.
Assuntos
Saccharomycetales , Vinho , Fermentação , Filogenia , Saccharomycetales/genética , Pichia/genética , Sequência de Bases , Análise de Sequência de DNA , DNA Fúngico/genética , DNA Espaçador Ribossômico/genéticaRESUMO
Kombucha is a fermented beverage derived from a sweetened tea fermentation inoculated with a bacteria-yeast consortium referred to as Symbiotic Culture of Bacteria and Yeast (SCOBY). Different SCOBY cultures can impact the beverage's quality and make the whole process highly variable. Adding Saccharomyces yeast cultures to the fermentation process can avoid stalled fermentations, providing a reproducible beverage. Here, we explored using different Saccharomyces eubayanus strains together with SCOBY in the context of kombucha fermentation. Our results show that yeast x SCOBY co-cultures exhibited a robust fermentation profile, providing ethanol and acetic acid levels ranging from 0,18-1,81 %v/v and 0,35-1,15 g/L, respectively. The kombucha volatile compound profile of co-cultures was unique, where compounds such as Isopentyl acetate where only found in yeast x SCOBY fermentations. Metabarcoding revealed that the SCOBY composition was also dependent on the S. eubayanus genotype, where besides Saccharomyces, amplicon sequence variants belonging to Brettanomyces and Starmerella were detected. These differences concomitated global changes in transcript levels in S. eubayanus related to the metabolism of organic molecules used in kombucha fermentation. This study highlights the potential for exploring different S. eubayanus strains for kombucha fermentation, and the significant yeast genotype effect in the profile differentiation in this process.
Assuntos
Brettanomyces , Saccharomyces , Saccharomycetales , Fermentação , Saccharomyces/genética , Saccharomycetales/genéticaRESUMO
Population-level sampling and whole-genome sequences of different individuals allow one to identify signatures of hybridization, gene flow and potential molecular mechanisms of environmental responses. Here, we report the isolation of 160 Saccharomyces eubayanus strains, the cryotolerant ancestor of lager yeast, from ten sampling sites in Patagonia along 2,000 km of Nothofagus forests. Frequency of S. eubayanus isolates was higher towards southern and colder regions, demonstrating the cryotolerant nature of the species. We sequenced the genome of 82 strains and, together with 23 available genomes, performed a comprehensive phylogenetic analysis. Our results revealed the presence of five different lineages together with dozens of admixed strains. Various analytical methods reveal evidence of gene flow and historical admixture between lineages from Patagonia and Holarctic regions, suggesting the co-occurrence of these ancestral populations. Analysis of the genetic contribution to the admixed genomes revealed a Patagonian genetic origin of the admixed strains, even for those located in the North Hemisphere. Overall, the Patagonian lineages, particularly the southern populations, showed a greater global genetic diversity compared to Holarctic and Chinese lineages, in agreement with a higher abundance in Patagonia. Thus, our results are consistent with a likely colonization of the species from peripheral glacial refugia from South Patagonia. Furthermore, fermentative capacity and maltose consumption resulted negatively correlated with latitude, indicating better fermentative performance in northern populations. Our genome analysis, together with previous reports in the sister species S. uvarum suggests that a S. eubayanus ancestor was adapted to the harsh environmental conditions of Patagonia, a region that provides the ecological conditions for the diversification of these ancestral lineages.
Assuntos
Variação Genética , Saccharomyces/classificação , Sequenciamento Completo do Genoma/métodos , Aclimatação , Argentina , Chile , Temperatura Baixa , Fluxo Gênico , Genoma Fúngico , Filogenia , Filogeografia , Saccharomyces/genéticaRESUMO
Although the typical genomic and phenotypic changes that characterize the evolution of organisms under the human domestication syndrome represent textbook examples of rapid evolution, the molecular processes that underpin such changes are still poorly understood. Domesticated yeasts for brewing, where short generation times and large phenotypic and genomic plasticity were attained in a few generations under selection, are prime examples. To experimentally emulate the lager yeast domestication process, we created a genetically complex (panmictic) artificial population of multiple Saccharomyces eubayanus genotypes, one of the parents of lager yeast. Then, we imposed a constant selection regime under a high ethanol concentration in 10 replicated populations during 260 generations (6 months) and compared them with propagated controls exposed solely to glucose. Propagated populations exhibited a selection differential of 60% in growth rate in ethanol, mostly explained by the proliferation of a single lineage (CL248.1) that competitively displaced all other clones. Interestingly, the outcome does not require the entire time-course of adaptation, as four lineages monopolized the culture at generation 120. Sequencing demonstrated that de novo genetic variants were produced in all propagated lines, including SNPs, aneuploidies, INDELs and translocations. In addition, the different propagated populations showed correlated responses resembling the domestication syndrome: genomic rearrangements, faster fermentation rates, lower production of phenolic off-flavours and lower volatile compound complexity. Expression profiling in beer wort revealed altered expression levels of genes related to methionine metabolism, flocculation, stress tolerance and diauxic shift, likely contributing to higher ethanol and fermentation stress tolerance in the evolved populations. Our study shows that experimental evolution can rebuild the brewing domestication process in 'fast motion' in wild yeast, and also provides a powerful tool for studying the genetics of the adaptation process in complex populations.
Assuntos
Etanol , Fermentação , Saccharomyces , Etanol/metabolismo , Hibridização Genética , Saccharomyces/genéticaRESUMO
Since its identification, Saccharomyces eubayanus has been recognized as the missing parent of the lager hybrid, S. pastorianus. This wild yeast has never been isolated from fermentation environments, thus representing an interesting candidate for evolutionary, ecological and genetic studies. However, it is imperative to develop additional molecular genetics tools to ease manipulation and thus facilitate future studies. With this in mind, we generated a collection of stable haploid strains representative of three main lineages described in S. eubayanus (PB-1, PB-2 and PB-3), by deleting the HO gene using CRISPR-Cas9 and tetrad micromanipulation. Phenotypic characterization under different conditions demonstrated that the haploid derivates were extremely similar to their parental strains. Genomic analysis in three strains highlighted a likely low frequency of off-targets, and sequencing of a single tetrad evidenced no structural variants in any of the haploid spores. Finally, we demonstrate the utilization of the haploid set by challenging the strains under mass-mating conditions. In this way, we found that S. eubayanus under liquid conditions has a preference to remain in a haploid state, unlike S. cerevisiae that mates rapidly. This haploid resource is a novel set of strains for future yeast molecular genetics studies.
Assuntos
Saccharomyces cerevisiae , Saccharomyces , Cerveja , Fermentação , Haploidia , Saccharomyces/genética , Saccharomyces cerevisiae/genéticaRESUMO
The recent isolation of the yeast Saccharomyces eubayanus has opened new avenues in the brewing industry. Recent studies characterized the production of volatile compounds in a handful set of isolates, utilizing a limited set of internal standards, representing insufficient evidence into the ability of the species to produce new and diverse aromas in beer. Using Headspace solid-phase microextraction followed by gas chromatography-mass spectrometry (HS-SPME-GC-MS), we characterized for the first time the production of volatile compounds in 10 wild strains under fermentative brewing conditions and compared them to a commercial lager yeast. S. eubayanus produces a higher number of volatile compounds compared to lager yeast, including acetate and ethyl esters, together with higher alcohols and phenols. Many of the compounds identified in S. eubayanus are related to fruit and floral flavors, which were absent in the commercial lager yeast ferment. Interestingly, we found a significant strain × temperature interaction, in terms of the profiles of volatile compounds, where some strains produced significantly greater levels of esters and higher alcohols. In contrast, other isolates preferentially yielded phenols, depending on the fermentation temperature. This work demonstrates the profound fermentation product differences between different S. eubayanus strains, highlighting the enormous potential of this yeast to produce new styles of lager beers.
RESUMO
The utilization of S. eubayanus has recently become a topic of interest due to the novel organoleptic properties imparted to beer. However, the utilization of S. eubayanus in brewing requires the comprehension of the mechanisms that underlie fermentative differences generated from its natural genetic variability. Here, we evaluated fermentation performance and volatile compound production in ten genetically distinct S. eubayanus strains in a brewing fermentative context. The evaluated strains showed a broad phenotypic spectrum, some of them exhibiting a high fermentation capacity and high levels of volatile esters and/or higher alcohols. Subsequently, we obtained molecular profiles by generating 'end-to-end' genome assemblies, as well as metabolome and transcriptome profiling of two Patagonian isolates exhibiting significant differences in beer aroma profiles. These strains showed clear differences in concentrations of intracellular metabolites, including amino acids, such as valine, leucine and isoleucine, likely impacting the production of 2-methylpropanol and 3-methylbutanol. These differences in the production of volatile compounds are attributed to gene expression variation, where the most profound differentiation is attributed to genes involved in assimilatory sulfate reduction, which in turn validates phenotypic differences in H2 S production. This study lays a solid foundation for future research to improve fermentation performance and select strains for new lager styles based on aroma and metabolic profiles.