Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(D1): D204-D210, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34850127

RESUMO

We describe an update of MirGeneDB, the manually curated microRNA gene database. Adhering to uniform and consistent criteria for microRNA annotation and nomenclature, we substantially expanded MirGeneDB with 30 additional species representing previously missing metazoan phyla such as sponges, jellyfish, rotifers and flatworms. MirGeneDB 2.1 now consists of 75 species spanning over ∼800 million years of animal evolution, and contains a total number of 16 670 microRNAs from 1549 families. Over 6000 microRNAs were added in this update using ∼550 datasets with ∼7.5 billion sequencing reads. By adding new phylogenetically important species, especially those relevant for the study of whole genome duplication events, and through updating evolutionary nodes of origin for many families and genes, we were able to substantially refine our nomenclature system. All changes are traceable in the specifically developed MirGeneDB version tracker. The performance of read-pages is improved and microRNA expression matrices for all tissues and species are now also downloadable. Altogether, this update represents a significant step toward a complete sampling of all major metazoan phyla, and a widely needed foundation for comparative microRNA genomics and transcriptomics studies. MirGeneDB 2.1 is part of RNAcentral and Elixir Norway, publicly and freely available at http://www.mirgenedb.org/.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Evolução Molecular , Genômica , Animais , Humanos , MicroRNAs/classificação , MicroRNAs/genética , Filogenia
2.
BMC Bioinformatics ; 23(1): 18, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991448

RESUMO

BACKGROUND: The function of non-coding RNA sequences is largely determined by their spatial conformation, namely the secondary structure of the molecule, formed by Watson-Crick interactions between nucleotides. Hence, modern RNA alignment algorithms routinely take structural information into account. In order to discover yet unknown RNA families and infer their possible functions, the structural alignment of RNAs is an essential task. This task demands a lot of computational resources, especially for aligning many long sequences, and it therefore requires efficient algorithms that utilize modern hardware when available. A subset of the secondary structures contains overlapping interactions (called pseudoknots), which add additional complexity to the problem and are often ignored in available software. RESULTS: We present the SeqAn-based software LaRA 2 that is significantly faster than comparable software for accurate pairwise and multiple alignments of structured RNA sequences. In contrast to other programs our approach can handle arbitrary pseudoknots. As an improved re-implementation of the LaRA tool for structural alignments, LaRA 2 uses multi-threading and vectorization for parallel execution and a new heuristic for computing a lower boundary of the solution. Our algorithmic improvements yield a program that is up to 130 times faster than the previous version. CONCLUSIONS: With LaRA 2 we provide a tool to analyse large sets of RNA secondary structures in relatively short time, based on structural alignment. The produced alignments can be used to derive structural motifs for the search in genomic databases.


Assuntos
RNA , Software , Algoritmos , Sequência de Bases , Humanos , Conformação de Ácido Nucleico , RNA/genética , Alinhamento de Sequência , Análise de Sequência de RNA
3.
BMC Bioinformatics ; 22(1): 360, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217219

RESUMO

BACKGROUND: Tumors are composed by a number of cancer cell subpopulations (subclones), characterized by a distinguishable set of mutations. This phenomenon, known as intra-tumor heterogeneity (ITH), may be studied using Copy Number Aberrations (CNAs). Nowadays ITH can be assessed at the highest possible resolution using single-cell DNA (scDNA) sequencing technology. Additionally, single-cell CNA (scCNA) profiles from multiple samples of the same tumor can in principle be exploited to study the spatial distribution of subclones within a tumor mass. However, since the technology required to generate large scDNA sequencing datasets is relatively recent, dedicated analytical approaches are still lacking. RESULTS: We present PhyliCS, the first tool which exploits scCNA data from multiple samples from the same tumor to estimate whether the different clones of a tumor are well mixed or spatially separated. Starting from the CNA data produced with third party instruments, it computes a score, the Spatial Heterogeneity score, aimed at distinguishing spatially intermixed cell populations from spatially segregated ones. Additionally, it provides functionalities to facilitate scDNA analysis, such as feature selection and dimensionality reduction methods, visualization tools and a flexible clustering module. CONCLUSIONS: PhyliCS represents a valuable instrument to explore the extent of spatial heterogeneity in multi-regional tumour sampling, exploiting the potential of scCNA data.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Análise por Conglomerados , Heterogeneidade Genética , Humanos , Análise de Sequência de DNA , Análise de Célula Única
4.
Bioinformatics ; 36(10): 3248-3250, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32016382

RESUMO

SUMMARY: In the last decade, increasing attention has been paid to the study of gene fusions. However, the problem of determining whether a gene fusion is a cancer driver or just a passenger mutation is still an open issue. Here we present DEEPrior, an inherently flexible deep learning tool with two modes (Inference and Retraining). Inference mode predicts the probability of a gene fusion being involved in an oncogenic process, by directly exploiting the amino acid sequence of the fused protein. Retraining mode allows to obtain a custom prediction model including new data provided by the user. AVAILABILITY AND IMPLEMENTATION: Both DEEPrior and the protein fusions dataset are freely available from GitHub at (https://github.com/bioinformatics-polito/DEEPrior). The tool was designed to operate in Python 3.7, with minimal additional libraries. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado Profundo , Software , Fusão Gênica , Probabilidade , Proteínas
5.
Bioinformatics ; 36(9): 2705-2711, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31999333

RESUMO

MOTIVATION: High-throughput next-generation sequencing can generate huge sequence files, whose analysis requires alignment algorithms that are typically very demanding in terms of memory and computational resources. This is a significant issue, especially for machines with limited hardware capabilities. As the redundancy of the sequences typically increases with coverage, collapsing such files into compact sets of non-redundant reads has the 2-fold advantage of reducing file size and speeding-up the alignment, avoiding to map the same sequence multiple times. METHOD: BioSeqZip generates compact and sorted lists of alignment-ready non-redundant sequences, keeping track of their occurrences in the raw files as well as of their quality score information. By exploiting a memory-constrained external sorting algorithm, it can be executed on either single- or multi-sample datasets even on computers with medium computational capabilities. On request, it can even re-expand the compacted files to their original state. RESULTS: Our extensive experiments on RNA-Seq data show that BioSeqZip considerably brings down the computational costs of a standard sequence analysis pipeline, with particular benefits for the alignment procedures that typically have the highest requirements in terms of memory and execution time. In our tests, BioSeqZip was able to compact 2.7 billion of reads into 963 million of unique tags reducing the size of sequence files up to 70% and speeding-up the alignment by 50% at least. AVAILABILITY AND IMPLEMENTATION: BioSeqZip is available at https://github.com/bioinformatics-polito/BioSeqZip. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Algoritmos , RNA-Seq , Análise de Sequência de DNA , Sequenciamento do Exoma
6.
Bioinformatics ; 36(3): 698-703, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504201

RESUMO

MOTIVATION: MicroRNAs (miRNAs) are small RNA molecules (∼22 nucleotide long) involved in post-transcriptional gene regulation. Advances in high-throughput sequencing technologies led to the discovery of isomiRs, which are miRNA sequence variants. While many miRNA-seq analysis tools exist, the diversity of output formats hinders accurate comparisons between tools and precludes data sharing and the development of common downstream analysis methods. RESULTS: To overcome this situation, we present here a community-based project, miRNA Transcriptomic Open Project (miRTOP) working towards the optimization of miRNA analyses. The aim of miRTOP is to promote the development of downstream isomiR analysis tools that are compatible with existing detection and quantification tools. Based on the existing GFF3 format, we first created a new standard format, mirGFF3, for the output of miRNA/isomiR detection and quantification results from small RNA-seq data. Additionally, we developed a command line Python tool, mirtop, to create and manage the mirGFF3 format. Currently, mirtop can convert into mirGFF3 the outputs of commonly used pipelines, such as seqbuster, isomiR-SEA, sRNAbench, Prost! as well as BAM files. Some tools have also incorporated the mirGFF3 format directly into their code, such as, miRge2.0, IsoMIRmap and OptimiR. Its open architecture enables any tool or pipeline to output or convert results into mirGFF3. Collectively, this isomiR categorization system, along with the accompanying mirGFF3 and mirtop API, provide a comprehensive solution for the standardization of miRNA and isomiR annotation, enabling data sharing, reporting, comparative analyses and benchmarking, while promoting the development of common miRNA methods focusing on downstream steps of miRNA detection, annotation and quantification. AVAILABILITY AND IMPLEMENTATION: https://github.com/miRTop/mirGFF3/ and https://github.com/miRTop/mirtop. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
MicroRNAs , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA , Transcriptoma
7.
Int J Mol Sci ; 20(8)2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31027180

RESUMO

The brain comprises a complex system of neurons interconnected by an intricate network of anatomical links. While recent studies demonstrated the correlation between anatomical connectivity patterns and gene expression of neurons, using transcriptomic information to automatically predict such patterns is still an open challenge. In this work, we present a completely data-driven approach relying on machine learning (i.e., neural networks) to learn the anatomical connection directly from a training set of gene expression data. To do so, we combined gene expression and connectivity data from the Allen Mouse Brain Atlas to generate thousands of gene expression profile pairs from different brain regions. To each pair, we assigned a label describing the physical connection between the corresponding brain regions. Then, we exploited these data to train neural networks, designed to predict brain area connectivity. We assessed our solution on two prediction problems (with three and two connectivity class categories) involving cortical and cerebellum regions. As demonstrated by our results, we distinguish between connected and unconnected regions with 85% prediction accuracy and good balance of precision and recall. In our future work we may extend the analysis to more complex brain structures and consider RNA-Seq data as additional input to our model.


Assuntos
Encéfalo/fisiologia , Perfilação da Expressão Gênica , Rede Nervosa/fisiologia , Algoritmos , Animais , Automação , Regulação da Expressão Gênica , Camundongos , Redes Neurais de Computação , Tamanho do Órgão , Curva ROC
8.
Int J Mol Sci ; 20(7)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30987060

RESUMO

Gene fusions have a very important role in the study of cancer development. In this regard, predicting the probability of protein fusion transcripts of developing into a cancer is a very challenging and yet not fully explored research problem. To this date, all the available approaches in literature try to explain the oncogenic potential of gene fusions based on protein domain analysis, that is cancer-specific and not easy to adapt to newly developed information. In our work, we choose the raw protein sequences as the input baseline, and propose the use of deep learning, and more specifically Convolutional Neural Networks, to infer the oncogenity probability score of gene fusion transcripts and to group them into a number of categories (e.g., oncogenic/not oncogenic). This is an inherently flexible methodology that, unlike previous approaches, can be re-trained with very less efforts on newly available data (for example, from a different cancer). Based on experimental results on a large dataset of pre-annotated gene fusions, our method is able to predict the oncogenity potential of gene fusion transcripts with accuracy of about 72%, which increases to 86% if we consider the only instances that are classified with a high confidence level.


Assuntos
Aprendizado Profundo , Fusão Oncogênica , Algoritmos , Humanos , Redes Neurais de Computação , Probabilidade
9.
BMC Bioinformatics ; 17: 148, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27036505

RESUMO

BACKGROUND: Massive parallel sequencing of transcriptomes, revealed the presence of many miRNAs and miRNAs variants named isomiRs with a potential role in several cellular processes through their interaction with a target mRNA. Many methods and tools have been recently devised to detect and quantify miRNAs from sequencing data. However, all of them are implemented on top of general purpose alignment methods, thus providing poorly accurate results and no information concerning isomiRs and conserved miRNA-mRNA interaction sites. RESULTS: To overcome these limitations we present a novel algorithm named isomiR-SEA, that is able to provide users with very accurate miRNAs expression levels and both isomiRs and miRNA-mRNA interaction sites precise classifications. Tags are mapped on the known miRNAs sequences thanks to a specialized alignment algorithm developed on top of biological evidence concerning miRNAs structure. Specifically, isomiR-SEA checks for miRNA seed presence in the input tags and evaluates, during all the alignment phases, the positions of the encountered mismatches, thus allowing to distinguish among the different isomiRs and conserved miRNA-mRNA interaction sites. CONCLUSIONS: isomiR-SEA performances have been assessed on two public RNA-Seq datasets proving that the implemented algorithm is able to account for more reliable and accurate miRNAs expression levels with respect to those provided by two compared state of the art tools. Moreover, differently from the few methods currently available to perform isomiRs detection, the proposed algorithm implements the evaluation of isomiRs and conserved miRNA-mRNA interaction sites already in the first alignment phases, thus avoiding any additional filtering stages potentially responsible for the loss of useful information.


Assuntos
Algoritmos , MicroRNAs/metabolismo , Oligonucleotídeos Antissenso/metabolismo , RNA Mensageiro/metabolismo , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Internet , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , RNA Mensageiro/genética , Análise de Sequência de RNA , Transcriptoma , Interface Usuário-Computador
10.
Nat Commun ; 15(1): 8122, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285176

RESUMO

Spiking neural networks and neuromorphic hardware platforms that simulate neuronal dynamics are getting wide attention and are being applied to many relevant problems using Machine Learning. Despite a well-established mathematical foundation for neural dynamics, there exists numerous software and hardware solutions and stacks whose variability makes it difficult to reproduce findings. Here, we establish a common reference frame for computations in digital neuromorphic systems, titled Neuromorphic Intermediate Representation (NIR). NIR defines a set of computational and composable model primitives as hybrid systems combining continuous-time dynamics and discrete events. By abstracting away assumptions around discretization and hardware constraints, NIR faithfully captures the computational model, while bridging differences between the evaluated implementation and the underlying mathematical formalism. NIR supports an unprecedented number of neuromorphic systems, which we demonstrate by reproducing three spiking neural network models of different complexity across 7 neuromorphic simulators and 4 digital hardware platforms. NIR decouples the development of neuromorphic hardware and software, enabling interoperability between platforms and improving accessibility to multiple neuromorphic technologies. We believe that NIR is a key next step in brain-inspired hardware-software co-evolution, enabling research towards the implementation of energy efficient computational principles of nervous systems. NIR is available at neuroir.org.


Assuntos
Encéfalo , Modelos Neurológicos , Redes Neurais de Computação , Software , Encéfalo/fisiologia , Humanos , Neurônios/fisiologia , Simulação por Computador , Aprendizado de Máquina , Potenciais de Ação/fisiologia
11.
Front Bioinform ; 3: 1143014, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063647

RESUMO

Making raw data available to the research community is one of the pillars of Findability, Accessibility, Interoperability, and Reuse (FAIR) research. However, the submission of raw data to public databases still involves many manually operated procedures that are intrinsically time-consuming and error-prone, which raises potential reliability issues for both the data themselves and the ensuing metadata. For example, submitting sequencing data to the European Genome-phenome Archive (EGA) is estimated to take 1 month overall, and mainly relies on a web interface for metadata management that requires manual completion of forms and the upload of several comma separated values (CSV) files, which are not structured from a formal point of view. To tackle these limitations, here we present EGAsubmitter, a Snakemake-based pipeline that guides the user across all the submission steps, ranging from files encryption and upload, to metadata submission. EGASubmitter is expected to streamline the automated submission of sequencing data to EGA, minimizing user errors and ensuring higher end product fidelity.

12.
Front Neurosci ; 16: 999029, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620463

RESUMO

Spiking Neural Networks (SNNs), known for their potential to enable low energy consumption and computational cost, can bring significant advantages to the realm of embedded machine learning for edge applications. However, input coming from standard digital sensors must be encoded into spike trains before it can be elaborated with neuromorphic computing technologies. We present here a detailed comparison of available spike encoding techniques for the translation of time-varying signals into the event-based signal domain, tested on two different datasets both acquired through commercially available digital devices: the Free Spoken Digit dataset (FSD), consisting of 8-kHz audio files, and the WISDM dataset, composed of 20-Hz recordings of human activity through mobile and wearable inertial sensors. We propose a complete pipeline to benchmark these encoding techniques by performing time-dependent signal classification through a Spiking Convolutional Neural Network (sCNN), including a signal preprocessing step consisting of a bank of filters inspired by the human cochlea, feature extraction by production of a sonogram, transfer learning via an equivalent ANN, and model compression schemes aimed at resource optimization. The resulting performance comparison and analysis provides a powerful practical tool, empowering developers to select the most suitable coding method based on the type of data and the desired processing algorithms, and further expands the applicability of neuromorphic computational paradigms to embedded sensor systems widely employed in the IoT and industrial domains.

13.
Front Neurosci ; 16: 951164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440280

RESUMO

Spatio-temporal pattern recognition is a fundamental ability of the brain which is required for numerous real-world activities. Recent deep learning approaches have reached outstanding accuracies in such tasks, but their implementation on conventional embedded solutions is still very computationally and energy expensive. Tactile sensing in robotic applications is a representative example where real-time processing and energy efficiency are required. Following a brain-inspired computing approach, we propose a new benchmark for spatio-temporal tactile pattern recognition at the edge through Braille letter reading. We recorded a new Braille letters dataset based on the capacitive tactile sensors of the iCub robot's fingertip. We then investigated the importance of spatial and temporal information as well as the impact of event-based encoding on spike-based computation. Afterward, we trained and compared feedforward and recurrent Spiking Neural Networks (SNNs) offline using Backpropagation Through Time (BPTT) with surrogate gradients, then we deployed them on the Intel Loihi neuromorphic chip for fast and efficient inference. We compared our approach to standard classifiers, in particular to the Long Short-Term Memory (LSTM) deployed on the embedded NVIDIA Jetson GPU, in terms of classification accuracy, power, and energy consumption together with computational delay. Our results show that the LSTM reaches ~97% of accuracy, outperforming the recurrent SNN by ~17% when using continuous frame-based data instead of event-based inputs. However, the recurrent SNN on Loihi with event-based inputs is ~500 times more energy-efficient than the LSTM on Jetson, requiring a total power of only ~30 mW. This work proposes a new benchmark for tactile sensing and highlights the challenges and opportunities of event-based encoding, neuromorphic hardware, and spike-based computing for spatio-temporal pattern recognition at the edge.

15.
J Biotechnol ; 261: 157-168, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28888961

RESUMO

BACKGROUND: The use of novel algorithmic techniques is pivotal to many important problems in life science. For example the sequencing of the human genome (Venter et al., 2001) would not have been possible without advanced assembly algorithms and the development of practical BWT based read mappers have been instrumental for NGS analysis. However, owing to the high speed of technological progress and the urgent need for bioinformatics tools, there was a widening gap between state-of-the-art algorithmic techniques and the actual algorithmic components of tools that are in widespread use. We previously addressed this by introducing the SeqAn library of efficient data types and algorithms in 2008 (Döring et al., 2008). RESULTS: The SeqAn library has matured considerably since its first publication 9 years ago. In this article we review its status as an established resource for programmers in the field of sequence analysis and its contributions to many analysis tools. CONCLUSIONS: We anticipate that SeqAn will continue to be a valuable resource, especially since it started to actively support various hardware acceleration techniques in a systematic manner.


Assuntos
Bases de Dados Genéticas , Genômica/métodos , Análise de Sequência de DNA/métodos , Software , Algoritmos , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA