RESUMO
BACKGROUND: Allergen-specific immunotherapy (AIT) is the only disease-modifying treatment approach to change disease-causing allergens. Hypoallergenic derivatives show promise as potential therapeutics, amongst which BTH2 was designed to induce tolerance against Blomia tropicalis allergy. Our aim was to investigate the hypoallergenicity and immunoregulatory activity of BTH2 in vitro and its therapeutic potential in a mouse model of AIT. METHODS: Recombinant Blo t 5 and Blo t 21 allergens and their hybrid derivatives (BTH1 and BTH2) were expressed and purified. IgE binding capacity was tested by ELISA using sera from Brazilian, Colombian, and Ecuadorian subjects. Secretion of cytokines in supernatants from human cell cultures was measured following stimulation with the four recombinants and controls. The capacity of BTH2 to ameliorate allergic airway inflammation induced by B. tropicalis extract was evaluated in a murine model of AIT. RESULTS: rBlo t 5 and rBlo t 21 were identified as major allergens in Latin American patients, and BTH2 had the lowest IgE binding. In vitro stimulation of human cells induced greater levels of IL-10 and IFN-γ and reduced the secretion of Th2 cytokines. BTH2 ameliorated allergic airway inflammation in B. tropicalis-challenged A/J mice, as evidenced by the histopathological and humoral biomarkers: decreased Th2 cytokines and cellular infiltration (especially eosinophils), lower activity of eosinophil peroxidase, an increase in IgG blocking antibodies and strong reduction of mucus production by goblet cells. CONCLUSIONS: Our study shows that BTH2 represents a promising candidate for the treatment of B. tropicalis allergy with hypoallergenic, immune regulatory and therapeutic properties. Further pre-clinical studies are required in murine models of chronic asthma to further address the efficacy and safety of BTH2 as a vaccine against B. tropicalis-induced allergy.
Assuntos
Hipersensibilidade , Humanos , Camundongos , Animais , Modelos Animais de Doenças , Hipersensibilidade/terapia , Alérgenos , Inflamação , Citocinas , Dessensibilização Imunológica , Imunoglobulina ERESUMO
Abstract: La planta Hevea brasiliensis se utiliza ampliamente en la industria como fuente de extracción de caucho, un elemento empleado en diversas áreas comerciales y médicas. Los estudios inmunológicos de esta especie indican que es una fuente alergénica importante, que puede provocar sensibilización y alergia. Se han identificado diferentes componentes alergénicos de esta planta, con diversas propiedades inmunitarias y bioquímicas, y estudiado más de diez tipos diferentes de alérgenos, cada uno con distinta capacidad de inducir síntomas alérgicos. En esta revisión informamos los avances actuales en el estudio de Hevea brasiliensis.
Resumen: Hevea brasiliensis, a plant species used extensively for rubber extraction, is a common allergenic source that can cause sensitization and allergic reactions. Recent immunological studies have characterized various allergenic components of Hevea brasiliensis that possess diverse immune and biochemical properties. Over ten types of allergens have been identified, each with varying capacities to induce allergic symptoms. This review presents the current advances in the study of this allergenic source.
Assuntos
Hevea , Humanos , Estudos RetrospectivosRESUMO
Toxocariasis is an infection caused by the round worms Toxocara canis and Toxocara cati. It occurs worldwide though it is more prevalent in developing countries. For the diagnosis of toxocariasis, the most used method is the indirect enzyme-linked immunosorbent assay (indirect ELISA), based on the detection of specific antibodies using the excreted/secreted products from T. canis larvae (TES) as antigens, but it cross-reacts with several helminth infections. For this reason, there is a need to investigate species-specific immunoreactive proteins, which can be used for the development of a more sensitive and specific diagnosis. This study aims to investigate immunoreactive protein candidates to be used for the development of a more sensitive and specific diagnosis of Toxocara spp. infection in humans. We have used immunoblotting and mass spectrometry to select four Toxocara canis immunoreactive proteins that were recombinantly expressed in bacteria and evaluated as potential new diagnostic antigens (rMUC3, rTES 26, rTES32 and rCTL4). The recognition of these recombinant proteins by total serum IgG and IgG4 was assayed using the purified proteins in an isolated manner or in combination. The IgG ELISAs performed with individual recombinant antigens reached values of sensitivity and specificity that ranged from 91.7% to 97.3% and 94.0% to 97.9%, respectively. Among the analyses, the IgG4 immunoassay was proven to be more effective, revealing a sensitivity that ranged from 88.8% to 98.3% and a specificity of 97.8%-97.9%. The IgG4 ELISA was shown to be more effective and presented no cross-reactivity when using combinations of the rTES 26 and rCTL4 recombinant proteins. The combination of these two molecules achieved 100% sensitivity and specificity. The use of only two recombinant proteins can contribute to improve the current panorama of toxocariasis immunodiagnosis for, with a better optimization and reduced cost.