Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pak J Pharm Sci ; 36(2): 409-415, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37530147

RESUMO

Lipid A is a fragment of lipopolysaccharide (LPS) in gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa; hence inhibition of its biosynthesis is one of the plausible ways of preventing such bacteria from growth and thus preventing gastrointestinal diseases caused by Escherichia coli and pseudomonas aeruginosa. This research revolves around the development of antibiotic glyceride derivatives for the inhibition of the biosynthesis of lipid A. To target the enzymes involved in the biosynthesis of lipid A, four N,N-dimethylaminobenzoate moiety containing fatty diglyceride derivatives were synthesized through a multi-step synthetic scheme starting from glycerol. The molecular structure of the targeted molecules and synthesized intermediates in the synthetic scheme were confirmed by detailed structural analysis through 1N-NMR, mass and IR spectroscopic techniques. Antibacterial activity was evaluated against the gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). The derivatives also underwent docking analysis on the pdb's of enzymatic catalysts involved in the biosynthesis of lipid A using AutoDock Vina package. All synthesized fatty esters gave good antibacterial activity and binding energy upto -7 kcal/mol in the docking analysis. A structure-property relationship was established between alkyl chain lengths of diglycerides and their resultant binding energies. These molecules and their resultant activity can assist in further designing and retrosynthesis of molecular derivatives of drug molecules with lipid A biosynthesis as target for its inhibition.


Assuntos
Escherichia coli , Lipídeo A , Pseudomonas aeruginosa , Diglicerídeos , Antibacterianos/química , Testes de Sensibilidade Microbiana
2.
Pak J Pharm Sci ; 33(5): 2017-2021, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33824109

RESUMO

In this research, molecular structural manipulation of treosulfan alkylating agent and resultant changes in binding is studied to assist in designing derivatives of treosulfan for synthesis. Molecular docking has been conducted on simulated heterocyclic polyaromatic alkylating diepoxide derivatives of treosulfan with DNA nucleobases of dodecamer duplex of sequences d(CGCGAATTCGCG) and d(CGCGAATTCGCG) using Autodock vina package. Two series of simulated diepoxide molecules were designed with increasing aryl ring chain in linear and fused aryl way between the two epoxide reactive rings. Relationship between increasing no. of aryl rings (both linear and fused) between epoxide moieties on the binding energy values was evaluated. We also identified that designed molecules bind specifically to Guanine and Cytosine (GC) base pairs on DNA. Mode of interaction and resultant behavior as an alkylating agent or as minor groove binder was also found to be dependent up on the no. of aryl rings and their connectivity in the molecule. Both linearly bonded and fused aryl rings in higher number, between the epoxide rings, gave the strongest binding with the binding energy up to -8.1 and -8.7 Kcal/mol, respectively. These relationships can immensely help in designing and synthesis of derivatives of treosulfan like diepoxide based alkylating agents.


Assuntos
Antineoplásicos Alquilantes/química , Bussulfano/análogos & derivados , DNA/química , Compostos de Epóxi/química , Simulação de Acoplamento Molecular , Sítios de Ligação , Bussulfano/química , Conformação de Ácido Nucleico , Relação Estrutura-Atividade
3.
Pak J Pharm Sci ; 33(5(Supplementary)): 2239-2242, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33832896

RESUMO

Here, new phenoxide derivatives of diisopropyl flourophosphate for reaction with Lewis basic sites on acetyl cholinesterase (AChE) were designed. Such binding interaction or reaction inhibits the hydrolysis of the acetylcholine (ACh) neurotransmitter thus enhancing its concentration. This increased neurotransmitter concentration can enhance memory and cognition thus improving symptoms of neurodegenerative diseases such as Alzheimer disease and down syndrome. For docking analysis, we particularly targeted those reception sites on AChE that interacts with the ACh. This led to structural design of derivatives of diisopropyl phenoxyphosphate with controlled reactivity stemming from para substituted phenoxide leaving group. Impact of electron donating (CH3, OCH3) and withdrawing substituents (COCH3) on para position of phenol group on rate of acyl addition elimination reaction was modeled using QM DFT technique. Difference in activation energy between electron donating and withdrawing substituents on phenoxide was noted hence making the derivatives of diisopropyl phenoxyphosphate less reactive and more selective. Docking also confirmed binding of designed derivatives with AChE. Hence novel derivatives with high binding energy and controlled reactivity were designed for retrosynthesis.


Assuntos
Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Desenho de Fármacos , Acetilcolinesterase/química , Sítios de Ligação , Inibidores da Colinesterase/química , Hidrólise , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
4.
Artigo em Inglês | MEDLINE | ID: mdl-36846052

RESUMO

The objective of the present study was to determine the acute and subacute toxicity profile of a polyherbal formulation called "Goubion" in addition to the in vivo antihyperuricemic study using fructose-induced hyperuricemia. Goubion is a combination of Colchicum autumnale (tuber), Tribulus terresteris (fruit), Vitex negundo (leaves), Smilax chinensis (root), Glycyrrhiza glabra (root), and Curcuma amada (rhizome). The acute toxicity study revealed no signs of mortality and morbidity at a single dose of 2000 mg/kg. Similarly, the results of the subacute repeated dose toxicity study exhibited no signs of mortality at any of the doses. However, significant changes in hematological, biochemical, and renal parameters were recorded at the dose of 60 mg/kg. Antihyperuricemic activity was tested at the dose of 15 mg/kg and 20 mg/kg of Goubion, respectively against 5 mg/kg Allopurinol. Based on the antihyperuricemic study, we infer that the Goubion has a significant hypouricemic action, as it remarkably decreased the elevated uric acid levels. The results also suggest the potential inhibitory capability of Goubion on xanthine oxidase dehydrogenase might be the mechanism behind the hypouricemic effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA