Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(41): 25212-25218, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32999065

RESUMO

The regrowth of severed axons is fundamental to reestablish motor control after spinal-cord injury (SCI). Ongoing efforts to promote axonal regeneration after SCI have involved multiple strategies that have been only partially successful. Our study introduces an artificial carbon-nanotube based scaffold that, once implanted in SCI rats, improves motor function recovery. Confocal microscopy analysis plus fiber tracking by magnetic resonance imaging and neurotracer labeling of long-distance corticospinal axons suggest that recovery might be partly attributable to successful crossing of the lesion site by regenerating fibers. Since manipulating SCI microenvironment properties, such as mechanical and electrical ones, may promote biological responses, we propose this artificial scaffold as a prototype to exploit the physics governing spinal regenerative plasticity.


Assuntos
Materiais Biomiméticos , Traumatismos da Coluna Vertebral/terapia , Alicerces Teciduais , Animais , Feminino , Microscopia Eletrônica de Varredura , Nanotecnologia , Ratos , Ratos Wistar , Traumatismos da Coluna Vertebral/diagnóstico por imagem
2.
Sci Adv ; 2(7): e1600087, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27453939

RESUMO

In modern neuroscience, significant progress in developing structural scaffolds integrated with the brain is provided by the increasing use of nanomaterials. We show that a multiwalled carbon nanotube self-standing framework, consisting of a three-dimensional (3D) mesh of interconnected, conductive, pure carbon nanotubes, can guide the formation of neural webs in vitro where the spontaneous regrowth of neurite bundles is molded into a dense random net. This morphology of the fiber regrowth shaped by the 3D structure supports the successful reconnection of segregated spinal cord segments. We further observed in vivo the adaptability of these 3D devices in a healthy physiological environment. Our study shows that 3D artificial scaffolds may drive local rewiring in vitro and hold great potential for the development of future in vivo interfaces.


Assuntos
Nanotubos de Carbono/química , Medula Espinal/transplante , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Técnicas de Cultura de Células , Estimulação Elétrica , Fenômenos Eletrofisiológicos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia Eletrônica de Varredura , Ratos , Ratos Wistar , Medula Espinal/citologia , Medula Espinal/fisiologia , Engenharia Tecidual , Córtex Visual/citologia , Córtex Visual/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA