RESUMO
The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange. Three-dimensional in vitro human distal lung culture systems would strongly facilitate the investigation of pathologies such as interstitial lung disease, cancer and coronavirus disease 2019 (COVID-19) pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we describe the development of a long-term feeder-free, chemically defined culture system for distal lung progenitors as organoids derived from single adult human alveolar epithelial type II (AT2) or KRT5+ basal cells. AT2 organoids were able to differentiate into AT1 cells, and basal cell organoids developed lumens lined with differentiated club and ciliated cells. Single-cell analysis of KRT5+ cells in basal organoids revealed a distinct population of ITGA6+ITGB4+ mitotic cells, whose offspring further segregated into a TNFRSF12Ahi subfraction that comprised about ten per cent of KRT5+ basal cells. This subpopulation formed clusters within terminal bronchioles and exhibited enriched clonogenic organoid growth activity. We created distal lung organoids with apical-out polarity to present ACE2 on the exposed external surface, facilitating infection of AT2 and basal cultures with SARS-CoV-2 and identifying club cells as a target population. This long-term, feeder-free culture of human distal lung organoids, coupled with single-cell analysis, identifies functional heterogeneity among basal cells and establishes a facile in vitro organoid model of human distal lung infections, including COVID-19-associated pneumonia.
Assuntos
COVID-19/virologia , Pulmão/citologia , Modelos Biológicos , Organoides/citologia , Organoides/virologia , SARS-CoV-2/fisiologia , Técnicas de Cultura de Tecidos , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , COVID-19/metabolismo , COVID-19/patologia , Diferenciação Celular , Divisão Celular , Células Clonais/citologia , Células Clonais/metabolismo , Células Clonais/virologia , Humanos , Técnicas In Vitro , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H1N1/fisiologia , Integrina alfa6/análise , Integrina beta4/análise , Queratina-5/análise , Organoides/metabolismo , Pneumonia Viral/metabolismo , Pneumonia Viral/patologia , Pneumonia Viral/virologia , SARS-CoV-2/crescimento & desenvolvimento , Análise de Célula Única , Receptor de TWEAK/análiseRESUMO
A 61-year-old woman without significant medical history developed fever 3 days after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination and went into shock the next day. She was negative for SARS-CoV-2 mRNA in real-time polymerase chain reaction (PCR). Finally, she died 10 days after vaccination. At autopsy, the heart showed moderate dilatation of both ventricles, and the myocardium showed an uneven color change and decreased elasticity. Histologically, severe myocarditis with extensive myocytolysis was observed. The myocarditis showed severe inflammatory cell infiltration with T-lymphocyte and macrophage predominance, and in addition to the inflammatory cells described above, vast nuclear dust accompanying neutrophilic infiltration was observed. In the bone marrow and lymph nodes, hemophagocytosis was observed. In postmortem examination, nucleic acids of any cardiotropic viruses including SARS-CoV-2 were not detected using multivirus real-time PCR system. We discussed the relationship between the possible immune reaction after vaccination and the myocarditis observed in this case from immunopathological viewpoints. This mRNA vaccine is the first applied nucleic acid vaccine for humans, and its mechanism of efficacy and immune acquisition remain unclear. We hope the accumulation of more detailed analyses of the similar cases to reveal the mechanism of this kind of adverse reaction.
Assuntos
COVID-19 , Miocardite , Vacinas , Autopsia , Poeira , Feminino , Humanos , Pessoa de Meia-Idade , Miocardite/etiologia , RNA Mensageiro , SARS-CoV-2 , Vacinação , Vacinas Sintéticas , Vacinas de mRNARESUMO
The development of in vitro toxicity assessment methods using cultured cells has gained popularity for promoting animal welfare in animal experiments. Herein, we briefly discuss the current status of hepatoxicity assessment using human- and rat-derived hepatocytes; we focus on the liver organoid method, which has been extensively studied in recent years, and discuss how toxicologic pathologists can use their knowledge and experience to contribute to the development of in vitro chemical hepatotoxicity assessment methods for drugs, pesticides, and chemicals. We also propose how toxicological pathologists should assess toxicity regarding the putative distribution of undifferentiated and differentiated cells in the organoid when liver organoids are observed in hematoxylin and eosin-stained specimens. This was done while considering the usefulness and limitations of in vitro studies for toxicologic pathology assessment.
RESUMO
Various pathogens, such as Ebola virus, Marburg virus, Nipah virus, Hendra virus, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and SARS-CoV-2, are threatening human health worldwide. The natural hosts of these pathogens are thought to be bats. The rousette bat, a megabat, is thought to be a natural reservoir of filoviruses, including Ebola and Marburg viruses. Additionally, the rousette bat showed a transient infection in the experimental inoculation of SARS-CoV-2. In the current study, we established and characterized intestinal organoids from Leschenault's rousette, Rousettus leschenaultii. The established organoids successfully recapitulated the characteristics of intestinal epithelial structure and morphology, and the appropriate supplements necessary for long-term stable culture were identified. The organoid showed susceptibility to Pteropine orthoreovirus (PRV) but not to SARS-CoV-2 in experimental inoculation. This is the first report of the establishment of an expandable organoid culture system of the rousette bat intestinal organoid and its sensitivity to bat-associated viruses, PRV and SARS-CoV-2. This organoid is a useful tool for the elucidation of tolerance mechanisms of the emerging rousette bat-associated viruses such as Ebola and Marburg virus.
Assuntos
COVID-19/virologia , Quirópteros/virologia , Organoides/virologia , Orthoreovirus/fisiologia , Infecções por Reoviridae/virologia , SARS-CoV-2/fisiologia , Animais , COVID-19/veterinária , Técnicas de Cultura de Células , Células Cultivadas , Quirópteros/fisiologia , Humanos , Intestinos/citologia , Intestinos/virologia , Organoides/citologia , Infecções por Reoviridae/veterináriaRESUMO
Protein phosphatase 6 (PP6) is an essential serine/threonine protein phosphatase that acts as an important tumor suppressor. However, increased protein levels of PP6 have been observed in some cancer types, and they correlate with poor prognosis in glioblastoma. This raises a question about how PP6 protein levels are regulated in normal and transformed cells. In this study, we show that PP6 protein levels increase in response to pharmacologic and genetic inhibition of autophagy. PP6 associates with autophagic adaptor protein p62/SQSTM1 and is degraded in a p62-dependent manner. Accordingly, protein levels of PP6 and p62 fluctuate in concert under different physiological and pathophysiological conditions. Our data reveal that PP6 is regulated by p62-dependent autophagy and suggest that accumulation of PP6 protein in tumor tissues is caused at least partially by deficiency in autophagy.
Assuntos
Autofagia/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Inibidores de Cisteína Proteinase/farmacologia , Inibidores Enzimáticos/farmacologia , Células HeLa , Humanos , Leupeptinas/farmacologia , Macrolídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteólise , Proteínas de Ligação a RNA/metabolismo , Proteína Sequestossoma-1/metabolismoRESUMO
The authors wish to make the following corrections to this paper [...].
RESUMO
In human and dogs, bladder cancer (BC) is the most common neoplasm affecting the urinary tract. Dog BC resembles human muscle-invasive BC in histopathological characteristics and gene expression profiles, and could be an important research model for this disease. Cancer patient-derived organoid culture can recapitulate organ structures and maintains the gene expression profiles of original tumor tissues. In a previous study, we generated dog prostate cancer organoids using urine samples, however dog BC organoids had never been produced. Therefore we aimed to generate dog BC organoids using urine samples and check their histopathological characteristics, drug sensitivity, and gene expression profiles. Organoids from individual BC dogs were successfully generated, expressed urothelial cell markers (CK7, CK20, and UPK3A) and exhibited tumorigenesis in vivo. In a cell viability assay, the response to combined treatment with a range of anticancer drugs (cisplatin, vinblastine, gemcitabine or piroxicam) was markedly different in each BC organoid. In RNA-sequencing analysis, expression levels of basal cell markers (CK5 and DSG3) and several novel genes (MMP28, CTSE, CNN3, TFPI2, COL17A1, and AGPAT4) were upregulated in BC organoids compared with normal bladder tissues or two-dimensional (2D) BC cell lines. These established dog BC organoids might be a useful tool, not only to determine suitable chemotherapy for BC diseased dogs but also to identify novel biomarkers in human muscle-invasive BC. In the present study, for the 1st time, dog BC organoids were generated and several specifically upregulated organoid genes were identified. Our data suggest that dog BC organoids might become a new tool to provide fresh insights into both dog BC therapy and diagnostic biomarkers.
Assuntos
Técnicas de Cultura de Células/métodos , Doenças do Cão/patologia , Organoides/patologia , Neoplasias da Bexiga Urinária/veterinária , Bexiga Urinária/patologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doenças do Cão/tratamento farmacológico , Doenças do Cão/genética , Doenças do Cão/urina , Cães , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Masculino , Organoides/efeitos dos fármacos , Organoides/metabolismo , Análise de Sequência de RNA , Regulação para Cima , Bexiga Urinária/citologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/urina , Urina/citologia , Urotélio/citologiaRESUMO
Myc is a nuclear transcription factor that mainly regulates cell growth, cell cycle, metabolism, and survival. Myc family proteins contain c-Myc, n-Myc, and l-Myc. Among them, c-Myc can become a promising therapeutic target molecule in cancer. Cancer stem cells (CSCs) are known to be responsible for the therapeutic resistance. In the previous study, we demonstrated that c-Myc mediates drug resistance of colorectal CSCs using a patient-derived primary three-dimensional (3D) organoid culture. In this review, we mainly focus on the roles of c-Myc-related signaling in the regulation of CSCs, chemotherapy resistance, and colorectal cancer organoids. Finally, we introduce the various types of c-Myc inhibitors and propose the possibility of c-Myc as a therapeutic target against colorectal cancer.
Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Terapia de Alvo Molecular , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Humanos , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-myc/químicaRESUMO
Death associated protein kinase (DAPK) is a calcium/calmodulin-regulated serine/threonine kinase; its main function is to regulate cell death. DAPK family proteins consist of DAPK1, DAPK2, DAPK3, DAPK-related apoptosis-inducing protein kinases (DRAK)-1 and DRAK-2. In this review, we discuss the roles and regulatory mechanisms of DAPK family members and their relevance to diseases. Furthermore, a special focus is given to several reports describing cross-talks between DAPKs and mitogen-activated protein kinases (MAPK) family members in various pathologies. We also discuss small molecule inhibitors of DAPKs and their potential as therapeutic targets against human diseases.
Assuntos
Proteínas Quinases Associadas com Morte Celular/metabolismo , Sistema de Sinalização das MAP Quinases , Animais , Apoptose/efeitos dos fármacos , Proteínas Quinases Associadas com Morte Celular/antagonistas & inibidores , Humanos , Terapia de Alvo Molecular/métodos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
Colorectal cancer is one of the most common causes of cancer death worldwide. In patients with metastatic colorectal cancer, combination treatment with several anti-cancer drugs is employed and improves overall survival in some patients. Nevertheless, most patients with metastatic disease are not cured owing to the drug resistance. Cancer stem cells are known to regulate resistance to chemotherapy. In the previous study, we established a novel three-dimensional organoid culture model from tumor colorectal tissues of human patients using an air-liquid interface (ALI) method, which contained numerous cancer stem cells and showed resistance to 5-fluorouracil (5-FU) and Irinotecan. Here, we investigate which inhibitor for stem cell-related signal improves the sensitivity for anti-cancer drug treatment in tumor ALI organoids. Treatment with Hedgehog signal inhibitors (AY9944, GANT61) decreases the cell viability of organoids compared with Notch (YO-01027, DAPT) and Wnt (WAV939, Wnt-C59) signal inhibitors. Combination treatment of AY9944 or GANT61 with 5-FU, Irinotecan or Oxaliplatin decreases the cell viability of tumor organoids compared with each anti-cancer drug alone treatment. Treatment with AY9944 or GANT61 inhibits expression of stem cell markers c-Myc, CD44 and Nanog, likely through the decrease of their transcription factor, GLI-1 expression. Combination treatment of AY9944 or GANT61 with 5-FU or Irinotecan also prevents colony formation of colorectal cancer cell lines HCT116 and SW480. These findings suggest that Hedgehog signals mediate anti-cancer drug resistance in colorectal tumor patient-derived ALI organoids and that the inhibitors are useful as a combinational therapeutic strategy against colorectal cancer.
Assuntos
Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas Hedgehog/antagonistas & inibidores , Organoides/efeitos dos fármacos , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Fluoruracila/farmacologia , Células HCT116 , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Irinotecano , Células-Tronco Neoplásicas/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Piridinas/farmacologia , Pirimidinas/farmacologia , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Dicloridrato de trans-1,4-Bis(2-clorobenzaminometil)ciclo-hexano/farmacologiaRESUMO
Autophagy is an evolutionarily conserved intracellular degradation system that is involved in cell survival and activated in various diseases, including cancer. Beclin 1 is a central scaffold protein that assembles components for promoting or inhibiting autophagy. Association of Beclin 1 with its interacting proteins is regulated by the phosphorylation of Beclin 1 by various Ser/Thr kinases, but the Ser/Thr phosphatases that regulate these phosphorylation events remain unknown. Here we identify Ser-90 in Beclin 1 as a regulatory site whose phosphorylation is markedly enhanced in cells treated with okadaic acid, an inhibitor of protein phosphatase 2A (PP2A). Beclin 1 Ser-90 phosphorylation is induced in skeletal muscle tissues isolated from starved mice. The Beclin 1 S90A mutant blocked starvation-induced autophagy. We found association of PP2A B55α with Beclin 1, which dissociate by starvation. We also found that death-associated protein kinase 3 directly phosphorylates Beclin 1 Ser-90. We propose that physiological regulation of Beclin 1 Ser-90 phosphorylation by PP2A and death-associated protein kinase 3 controls autophagy.
Assuntos
Autofagia/efeitos dos fármacos , Proteína Fosfatase 2/antagonistas & inibidores , Animais , Proteínas Quinases Associadas com Morte Celular/metabolismo , Ácido Okadáico/farmacologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , FosforilaçãoRESUMO
Dog spontaneously develop prostate cancer (PC) like humans. Because most dogs with PC have a poor prognosis, they could be used as a translational model for advanced PC in humans. Stem cell-derived 3-D organoid culture could recapitulate organ structures and physiology. Using patient tissues, a human PC organoid culture system was established. Recent study has shown that urine cells also possess the characteristic of stem cells. However, urine cell-derived PC organoids have never been produced. Therefore, we generated PC organoids using the dog urine samples. Urine organoids were successfully generated from each dog with PC. Each organoid showed cystic structures and resembled the epithelial structures of original tissues. Expression of an epithelial cell marker, E-cadherin, and a myofibloblast marker, α-SMA, was observed in the urine organoids. The organoids also expressed a basal cell marker, CK5, and a luminal cell marker, CK8. CD49f-sorted basal cell organoids rapidly grew compared with CD24-sorted luminal cell organoids. The population of CD44-positive cells was the highest in both organoids and the original urine cells. Tumors were successfully formed with the injection of the organoids into immunodeficient mice. Treatment with a microtubule inhibitor, docetaxel, but not a cyclooxygenase inhibitor, piroxicam, and an mTOR inhibitor, rapamycin, decreased the cell viability of organoids. Treatment with a Hedgehog signal inhibitor, GANT61, increased the radiosensitivity in the organoids. These findings revealed that PC organoids using urine might become a useful tool for investigating the mechanisms of the pathogenesis and treatment of PC in dogs.
Assuntos
Técnicas de Cultura de Células/métodos , Modelos Animais de Doenças , Células-Tronco Neoplásicas/patologia , Organoides , Neoplasias da Próstata , Urina/citologia , Animais , Cães , Xenoenxertos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCIDRESUMO
Zipper interacting protein kinase (ZIPK), also known as death associated protein kinase 3, is a serine/threonine kinase that mediates variety of cell functions. The major biologic function of ZIPK is considered to be the regulation of apoptosis and smooth muscle contraction. Recently, several other functions of ZIPK have been gradually clarified. In this review article, we summarized the recent findings on ZIPK function and ZIPK-related cell signaling. We propose that ZIPK is a potential future target for the development of pharmaceutical therapy for cancer as well as cardiovascular diseases.
Assuntos
Proteínas Quinases Associadas com Morte Celular/metabolismo , Zíper de Leucina , Animais , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/fisiopatologia , Morte Celular , Movimento Celular , Proliferação de Células , Proteínas Quinases Associadas com Morte Celular/química , Humanos , Inflamação/enzimologia , Contração Muscular , Músculo Liso/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Conformação Proteica , Transdução de SinaisRESUMO
Death-associated protein kinase 3 (DAPK3) also known as zipper-interacting kinase is a serine/threonine kinase that mainly regulates cell death and smooth muscle contraction. We have previously found that protein expression of DAPK3 increases in the mesenteric artery from spontaneously hypertensive rats (SHRs) and that DAPK3 mediates the development of hypertension in SHRs partly through promoting reactive oxygen species-dependent vascular inflammation. However, it remains to be clarified how DAPK3 controls smooth muscle cell (SMC) proliferation and migration, which are also important processes for hypertension development. We, therefore, sought to investigate whether DAPK3 affects SMC proliferation and migration. siRNA against DAPK3 significantly inhibited platelet-derived growth factor (PDGF)-BB-induced SMC proliferation and migration as determined by bromodeoxyuridine (BrdU) incorporation and a cell counting assay as well as a Boyden chamber assay respectively. DAPK3 siRNA or a pharmacological inhibitor of DAPK3 inhibited PDGF-BB-induced lamellipodia formation as determined by rhodamine-phalloidin staining. DAPK3 siRNA or the DAPK inhibitor significantly reduced PDGF-BB-induced activation of p38 and heat-shock protein 27 (HSP27) as determined by Western blotting. In ex vivo studies, PDGF-BB-induced SMC out-growth was significantly inhibited by the DAPK inhibitor. In vivo, the DAPK inhibitor significantly prevented carotid neointimal hyperplasia in a mouse ligation model. The present results, for the first time, revealed that DAPK3 mediates PDGF-BB-induced SMC proliferation and migration through activation of p38/HSP27 signals, which may lead to vascular structural remodelling including neointimal hyperplasia. The present study suggests DAPK3 as a novel pharmaceutical target for the prevention of hypertensive cardiovascular diseases.
Assuntos
Movimento Celular/genética , Proliferação de Células , Proteínas Quinases Associadas com Morte Celular/fisiologia , Animais , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/patologia , Contagem de Células , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Proteínas Quinases Associadas com Morte Celular/antagonistas & inibidores , Proteínas Quinases Associadas com Morte Celular/genética , Proteínas Quinases Associadas com Morte Celular/metabolismo , Humanos , Hiperplasia/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/enzimologia , Neointima/patologia , Oxazolona/análogos & derivados , Oxazolona/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Ratos , Ratos Wistar , Transdução de SinaisRESUMO
AIMS/INTRODUCTION: Despite the emergence of new drugs with novel mechanisms of action, treatment options for older people and those with chronic kidney disease are still limited. MATERIALS AND METHODS: Using a medical database compiled from Diagnostic Procedure Combination hospitals, we retrospectively analyzed treatment status, glycemic control and kidney function over 3 years after the first oral antidiabetic drugs in Japanese adults with type 2 diabetes who were aged ≥65 years. RESULTS: Among 5,434 study participants, 3,246 (59.7%) were men, the median age was 72.0 years, the baseline median hemoglobin A1c was 7.1% and the baseline median estimated glomerular filtration rate was 66.6 mL/min/1.73 m2. Treatment was intensified in 40.0% of people during the 3-year observation period, and the median time to the first treatment intensification was 198 days. Insulin was the most commonly used agent for treatment intensification (36.9%, 802/2,175). Hemoglobin A1c of <7.0% was achieved in 3,571 (65.7%) at 360 ± 90 days. Multivariable logistic regression analysis found that baseline age, hemoglobin A1c and estimated glomerular filtration rate were negatively associated with achieving hemoglobin A1c of <7.0% at 360 ± 90 days. CONCLUSIONS: In older Japanese adults with type 2 diabetes, those with a lower estimated glomerular filtration rate were more likely to achieve hemoglobin A1c of <7.0%. To safely manage blood glucose levels in older adults with chronic kidney disease, physicians should remain vigilant about the risk of iatrogenic hypoglycemia.
Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , Taxa de Filtração Glomerular , Hemoglobinas Glicadas , Controle Glicêmico , Hipoglicemiantes , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Masculino , Idoso , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/administração & dosagem , Feminino , Estudos Retrospectivos , Japão/epidemiologia , Hemoglobinas Glicadas/análise , Glicemia/análise , Bases de Dados Factuais , Administração Oral , Idoso de 80 Anos ou mais , Rim/efeitos dos fármacos , Rim/fisiopatologia , Insuficiência Renal Crônica/tratamento farmacológico , Seguimentos , População do Leste AsiáticoRESUMO
Feline mammary tumors (FMT) are the third most common form of neoplasm in cats. The prognosis of FMT is poor due to its high malignancy and metastatic potential. The outcomes of treatment using the common anticancer drug doxorubicin (DOX) are unsatisfactory, with resistance inevitably leading to treatment failure and disease recurrence. Salinomycin (SAL), an antibiotic, has been reported to exert anticancer effects on both human and canine mammary tumors. To recapitulate the genetic and molecular imprints of the original tumor sample, we generated four strains of patient-derived FMT 2.5D organoids (FMTO) to examine the anti-tumor potential of SAL. Our results revealed that SAL decreased cell viability in a dose-dependent manner. Treatment of FMTO with SAL-induced cell apoptosis, represented by an upregulation of P21, Caspase-8, and Caspase-9, and increased activity of Caspase-3/7. The combination of low-dose SAL with DOX (SD) potentiated the cytotoxicity of the latter in both DOX-resistant and DOX-sensitive strains, promoting cell apoptosis and cell-cycle arrest. In vivo, experiments using FMTO-derived xenografts engrafted into mice revealed decreased tumor growth following SAL administration. In conclusion, SAL showed anticancer activity against FMTO and potentiated the anticancer effect of DOX by inhibiting cell proliferation and inducing apoptosis and cell cycle arrest. These results suggest that SAL may represent a new adjuvant treatment option for patients with FMT.
RESUMO
Lapatinib is an orally administered tyrosine kinase inhibitor used to treat human epidermal growth factor receptor 2 (HER2) -overexpressing breast cancers in humans. Recently, the potential of lapatinib treatment against canine urothelial carcinoma or feline mammary tumor was investigated. However, the pharmacokinetic studies of lapatinib in dogs and cats are not well-defined. In the present study, the pharmacokinetic characteristics of lapatinib in both cats and dogs after a single oral administration at a dose of 25 mg/kg were compared with each other. Lapatinib was administered orally to four female laboratory cats and four female beagle dogs. Blood samples were collected over time, and the plasma lapatinib concentrations were analyzed by HPLC. Following a single dose of 25 mg/kg, the averaged maximum plasma concentration (Cmax) of lapatinib in cats was 0.47 µg/mL and achieved at 7.1 hr post-administration, while the Cmax in dogs was 1.63 µg/mL and achieved at 9.5 hr post-administration. The mean elimination half-life was 6.5 hr in cats and 7.8 hr in dogs. The average area under the plasma concentration-time curve of dogs (37.2 hr·µg/mL) was significantly higher than that of cats (7.97 hr·µg/mL). These results exhibited slow absorptions of lapatinib in both animals after oral administration. The Cmax observed in cats was significantly lower and the half-life was shorter than those observed in dogs. Based on these results, a larger dose or shorter dosing intervals might be recommended in cats to achieve similar plasma concentration as dogs.
Assuntos
Carcinoma de Células de Transição , Doenças do Gato , Doenças do Cão , Neoplasias da Bexiga Urinária , Animais , Cães , Gatos , Feminino , Humanos , Lapatinib , Carcinoma de Células de Transição/veterinária , Neoplasias da Bexiga Urinária/veterinária , Inibidores de Proteínas Quinases , Administração Oral , Meia-Vida , Área Sob a CurvaRESUMO
Eukaryotic elongation factor 2 kinase (eEF2K) is a Ca2+/calmodulin-dependent protein kinase. We recently demonstrated that eEF2K protein increases in mesenteric artery from spontaneously hypertensive rats (SHR). Pathogenesis of hypertension is regulated in part by vascular inflammation. We tested the hypothesis whether eEF2K mediates vascular inflammatory responses and development of hypertension. In vascular endothelial cells, small interfering RNA (siRNA) against eEF2K inhibited induction of VCAM-1 and endothelial-selectin as well as monocyte adhesion by TNF-α (10 ng/ml). eEF2K siRNA inhibited phosphorylation of JNK and NF-κB p65 as well as reactive oxygen species (ROS) production by TNF-α. In vascular smooth muscle cells, eEF2K siRNA also inhibited VCAM-1 induction and phosphorylation of JNK and NF-κB by TNF-α. In vivo, increased blood pressure in SHR and ROS production, induction of inflammatory molecules, and hypertrophy in SHR superior mesenteric artery were reduced by an eEF2K inhibitor NH125 (500 µg·kg(-1)·day(-1)). In SHR superior mesenteric artery, impairment of ACh-induced relaxation was normalized by NH125. The present results for the first time demonstrate that eEF2K mediates TNF-α-induced vascular inflammation via ROS-dependent mechanism, which is at least partly responsible for the development of hypertension in SHR.
Assuntos
Quinase do Fator 2 de Elongação/fisiologia , Hipertensão/fisiopatologia , Estresse Oxidativo/fisiologia , Fator de Necrose Tumoral alfa/efeitos adversos , Vasculite/induzido quimicamente , Vasculite/fisiopatologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Quinase do Fator 2 de Elongação/antagonistas & inibidores , Quinase do Fator 2 de Elongação/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Humanos , Hipertensão/metabolismo , Imidazóis/farmacologia , MAP Quinase Quinase 4/metabolismo , Masculino , NF-kappa B/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Vasculite/metabolismoRESUMO
AIMS/INTRODUCTION: Clinical inertia, defined as a failure of healthcare providers to initiate or intensify treatment when indicated, is one of the challenges in achieving glycemic targets in type 2 diabetes patients. MATERIALS AND METHODS: Using a Japanese medical database compiled from Diagnostic Procedure Combination hospitals, this retrospective study investigated clinical inertia in type 2 diabetes patients treated with a single oral antidiabetic drug. We analyzed predictors of clinical inertia, measured the time to treatment intensification, and monitored patients' glycemic control and renal function for 2 years. The index date was defined as the first date of hemoglobin A1c ≥7.0% during the 180 (±60) days after the first oral antidiabetic drug was prescribed. RESULTS: Clinical inertia was identified in 35.3% of patients. The median time to treatment intensification from the index date was 75.5 days. The proportion of patients achieving hemoglobin A1c <7.0% within 2 years was 33.8% with clinical inertia, and 47.9% without clinical inertia. Multivariate logistic regression analysis showed that Charlson Comorbidity Index score and an interval between visits of ≥6 weeks significantly increased the risk of developing clinical inertia, and hyperlipidemia and higher hemoglobin A1c at baseline significantly decreased the risk. CONCLUSIONS: This study showed that clinical inertia in type 2 diabetes patients treated with a single oral antidiabetic drug might have a lasting effect on long-term glycemic control. Our findings will inform clinicians of the characteristics of patients associated with clinical inertia and the importance of providing appropriate treatment under clinical practice guidelines.
Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Humanos , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Hemoglobinas Glicadas , Estudos Retrospectivos , PrevalênciaRESUMO
The aim of this study was to measure the concentrations of enrofloxacin (ERFX) and other fluoroquinolones; orbifloxacin (OBFX), marbofloxacin (MBFX), and ofloxacin (OFLX) in the plasma and bile of rabbits after a single intravenous (IV) injection. Twenty male rabbits were divided into four groups and given each drug by IV injection into the ear vein at a dose of 5.0 mg/kg BW. The concentration of ERFX, ciprofloxacin (CPFX), OBFX, MBFX and OFLX in plasma and bile were determined by HPLC. CPFX, metabolite of ERFX, was also measured by HPLC in plasma and bile of rabbits receiving ERFX. Several pharmacokinetic parameters in plasma were calculated and biliary clearance (CLbile) was calculated from extent of biliary excretion and accumulation of AUC of each drug. After IV injection, elimination half-life (t1/2ß) was 4.13, 3.68, 6.60, 5.14 hr; volume of distribution at a steady state (Vdss) was 1.24, 0.503, 0.771, 1.02 L/kg; and total body clearance (CLtot) was 1.05, 0.418, 0.271, 0.453 L/kg/hr, respectively. The values for CLbile for ERFX, OBFX, MBFX, and OFLX were 0.0048, 0.0050, 0.0057, and 0.0094 L/kg/hr, respectively. These values represent 0.48%, 1.2%, 2.1%, and 2.3% of the total body clearance (CLtot) of each drug, respectively. The biliary clearance of CPFX was also measured and found to be 0.0199 L/kg/hr with ERFX administration. The results showed that ERFX, OBFX, MBFX, and OFLX were not excreted into the bile to a significant extent, making them safe drugs to use in rabbits.