Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
J Med Genet ; 61(4): 363-368, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38290823

RESUMO

BACKGROUND: SMAD6 encodes an intracellular inhibitor of the bone morphogenetic protein (BMP) signalling pathway. Until now, rare heterozygous loss-of-function variants in SMAD6 were demonstrated to increase the risk of disparate clinical disorders including cardiovascular disease, craniosynostosis and radioulnar synostosis. Only two unrelated patients harbouring biallelic SMAD6 variants presenting a complex cardiovascular phenotype and facial dysmorphism have been described. CASES: Here, we present the first two patients with craniosynostosis harbouring homozygous SMAD6 variants. The male probands, both born to healthy consanguineous parents, were diagnosed with metopic synostosis and bilateral or unilateral radioulnar synostosis. Additionally, one proband had global developmental delay. Echocardiographic evaluation did not reveal cardiac or outflow tract abnormalities. MOLECULAR ANALYSES: The novel missense (c.[584T>G];[584T>G], p.[(Val195Gly)];[(Val195Gly)]) and missense/splice-site variant (c.[817G>A];[817G>A], r.[(817g>a,817delins[a;817+2_817+228])];[(817g>a,817delins[a;817+2_817+228])], p.[(Glu273Lys,Glu273Serfs*72)];[(Glu273Lys,Glu273Serfs*72)]) both locate in the functional MH1 domain of the protein and have not been reported in gnomAD database. Functional analyses of the variants showed reduced inhibition of BMP signalling or abnormal splicing, respectively, consistent with a hypomorphic mechanism of action. CONCLUSION: Our data expand the spectrum of variants and phenotypic spectrum associated with homozygous variants of SMAD6 to include craniosynostosis.


Assuntos
Craniossinostoses , Rádio (Anatomia)/anormalidades , Sinostose , Ulna/anormalidades , Humanos , Masculino , Craniossinostoses/diagnóstico , Craniossinostoses/genética , Rádio (Anatomia)/metabolismo , Ulna/metabolismo , Mutação de Sentido Incorreto/genética , Proteína Smad6/genética , Proteína Smad6/metabolismo
2.
Am J Hum Genet ; 108(6): 1115-1125, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34010605

RESUMO

Importin 8, encoded by IPO8, is a ubiquitously expressed member of the importin-ß protein family that translocates cargo molecules such as proteins, RNAs, and ribonucleoprotein complexes into the nucleus in a RanGTP-dependent manner. Current knowledge of the cargoes of importin 8 is limited, but TGF-ß signaling components such as SMAD1-4 have been suggested to be among them. Here, we report that bi-allelic loss-of-function variants in IPO8 cause a syndromic form of thoracic aortic aneurysm (TAA) with clinical overlap with Loeys-Dietz and Shprintzen-Goldberg syndromes. Seven individuals from six unrelated families showed a consistent phenotype with early-onset TAA, motor developmental delay, connective tissue findings, and craniofacial dysmorphic features. A C57BL/6N Ipo8 knockout mouse model recapitulates TAA development from 8-12 weeks onward in both sexes but most prominently shows ascending aorta dilatation with a propensity for dissection in males. Compliance assays suggest augmented passive stiffness of the ascending aorta in male Ipo8-/- mice throughout life. Immunohistological investigation of mutant aortic walls reveals elastic fiber disorganization and fragmentation along with a signature of increased TGF-ß signaling, as evidenced by nuclear pSmad2 accumulation. RT-qPCR assays of the aortic wall in male Ipo8-/- mice demonstrate decreased Smad6/7 and increased Mmp2 and Ccn2 (Ctgf) expression, reinforcing a role for dysregulation of the TGF-ß signaling pathway in TAA development. Because importin 8 is the most downstream TGF-ß-related effector implicated in TAA pathogenesis so far, it offers opportunities for future mechanistic studies and represents a candidate drug target for TAA.


Assuntos
Aneurisma da Aorta Torácica/etiologia , Mutação com Perda de Função , Perda de Heterozigosidade , Fenótipo , beta Carioferinas/genética , Adulto , Animais , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linhagem , Transdução de Sinais , Síndrome , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem , beta Carioferinas/metabolismo
3.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36440912

RESUMO

MOTIVATION: Computational identification of copy number variants (CNVs) in sequencing data is a challenging task. Existing CNV-detection methods account for various sources of variation and perform different normalization strategies. However, their applicability and predictions are restricted to specific enrichment protocols. Here, we introduce a novel tool named varAmpliCNV, specifically designed for CNV-detection in amplicon-based targeted resequencing data (Haloplex™ enrichment protocol) in the absence of matched controls. VarAmpliCNV utilizes principal component analysis (PCA) and/or metric dimensional scaling (MDS) to control variances of amplicon associated read counts enabling effective detection of CNV signals. RESULTS: Performance of VarAmpliCNV was compared against three existing methods (ConVaDING, ONCOCNV and DECoN) on data of 167 samples run with an aortic aneurysm gene panel (n = 30), including 9 positive control samples. Additionally, we validated the performance on a large deafness gene panel (n = 145) run on 138 samples, containing 4 positive controls. VarAmpliCNV achieved higher sensitivity (100%) and specificity (99.78%) in comparison to competing methods. In addition, unsupervised clustering of CNV segments and visualization plots of amplicons spanning these regions are included as a downstream strategy to filter out false positives. AVAILABILITY AND IMPLEMENTATION: The tool is freely available through galaxy toolshed and at: https://hub.docker.com/r/cmgantwerpen/varamplicnv. Supplementary Data File S1: https://tinyurl.com/2yzswyhh; Supplementary Data File S2: https://tinyurl.com/ycyf2fb4. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Variações do Número de Cópias de DNA , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
4.
Hum Mutat ; 43(12): 1824-1828, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35819173

RESUMO

Pathogenic variants in JAG1 are known to cause Alagille syndrome (ALGS), a disorder that primarily affects the liver, lung, kidney, and skeleton. Whereas cardiac symptoms are also frequently observed in ALGS, thoracic aortic aneurysms have only been reported sporadically in postmortem autopsies. We here report two families with segregating JAG1 variants that present with isolated aneurysmal disease, as well as the first histological evaluation of aortic aneurysm tissue of a JAG1 variant carrier. Our observations shed more light on the pathomechanisms behind aneurysm formation in JAG1 variant harboring individuals and underline the importance of cardiovascular imaging in the clinical follow-up of such individuals.


Assuntos
Síndrome de Alagille , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Síndrome de Alagille/genética , Coração , Proteínas de Ligação ao Cálcio
5.
Genet Med ; 24(5): 1045-1053, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35058154

RESUMO

PURPOSE: In a large cohort of 373 pediatric patients with Marfan syndrome (MFS) with a severe cardiovascular phenotype, we explored the proportion of patients with MFS with a pathogenic FBN1 variant and analyzed whether the type/location of FBN1 variants was associated with specific clinical characteristics and response to treatment. Patients were recruited on the basis of the following criteria: aortic root z-score > 3, age 6 months to 25 years, no prior or planned surgery, and aortic root diameter < 5 cm. METHODS: Targeted resequencing and deletion/duplication testing of FBN1 and related genes were performed. RESULTS: We identified (likely) pathogenic FBN1 variants in 91% of patients. Ectopia lentis was more frequent in patients with dominant-negative (DN) variants (61%) than in those with haploinsufficient variants (27%). For DN FBN1 variants, the prevalence of ectopia lentis was highest in the N-terminal region (84%) and lowest in the C-terminal region (17%). The association with a more severe cardiovascular phenotype was not restricted to DN variants in the neonatal FBN1 region (exon 25-33) but was also seen in the variants in exons 26 to 49. No difference in the therapeutic response was detected between genotypes. CONCLUSION: Important novel genotype-phenotype associations involving both cardiovascular and extra-cardiovascular manifestations were identified, and existing ones were confirmed. These findings have implications for prognostic counseling of families with MFS.


Assuntos
Ectopia do Cristalino , Síndrome de Marfan , Variação Biológica da População , Criança , Ectopia do Cristalino/complicações , Ectopia do Cristalino/genética , Fibrilina-1/genética , Fibrilinas/genética , Genótipo , Humanos , Síndrome de Marfan/genética , Mutação , Fenótipo
6.
Am J Hum Genet ; 103(2): 288-295, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30032985

RESUMO

The natriuretic peptide signaling pathway has been implicated in many cellular processes, including endochondral ossification and bone growth. More precisely, different mutations in the NPR-B receptor and the CNP ligand have been identified in individuals with either short or tall stature. In this study we show that the NPR-C receptor (encoded by NPR3) is also important for the regulation of linear bone growth. We report four individuals, originating from three different families, with a phenotype characterized by tall stature, long digits, and extra epiphyses in the hands and feet. In addition, aortic dilatation was observed in two of these families. In each affected individual, we identified a bi-allelic loss-of-function mutation in NPR3. The missense mutations (c.442T>C [p.Ser148Pro] and c.1088A>T [p.Asp363Val]) resulted in intracellular retention of the NPR-C receptor and absent localization on the plasma membrane, whereas the nonsense mutation (c.1524delC [p.Tyr508∗]) resulted in nonsense-mediated mRNA decay. Biochemical analysis of plasma from two affected and unrelated individuals revealed a reduced NTproNP/NP ratio for all ligands and also high cGMP levels. These data strongly suggest a reduced clearance of natriuretic peptides by the defective NPR-C receptor and consequently increased activity of the NPR-A/B receptors. In conclusion, this study demonstrates that loss-of-function mutations in NPR3 result in increased NPR-A/B signaling activity and cause a phenotype marked by enhanced bone growth and cardiovascular abnormalities.


Assuntos
Tecido Conjuntivo/anormalidades , Perda de Heterozigosidade/genética , Mutação/genética , Peptídeo Natriurético Tipo C/genética , Adolescente , Desenvolvimento Ósseo/genética , Anormalidades Cardiovasculares/genética , Criança , GMP Cíclico/genética , Feminino , Humanos , Masculino , Transdução de Sinais/genética
7.
Europace ; 23(6): 918-927, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33221854

RESUMO

AIMS: We identified the first Belgian SCN5A founder mutation, c.4813 + 3_4813 + 6dupGGGT. To describe the clinical spectrum and disease severity associated with this mutation, clinical data of 101 SCN5A founder mutation carriers and 46 non-mutation carrying family members from 25 Belgian families were collected. METHODS AND RESULTS: The SCN5A founder mutation was confirmed by haplotype analysis. The clinical history and electrocardiographic parameters of the mutation carriers and their family members were gathered and compared. A cardiac electrical abnormality was observed in the majority (82%) of the mutation carriers. Cardiac conduction defects, defined as PR or QRS prolongation on electrocardiogram (ECG), were most frequent, occurring in 65% of the mutation carriers. Brugada syndrome (BrS) was the second most prevalent phenotype identified in 52%, followed by atrial dysrythmia in 11%. Overall, 33% of tested mutation carriers had a normal sodium channel blocker test. Negative tests were more common in family members distantly related to the proband. Overall, 23% of the mutation carriers were symptomatic, with 8% displaying major adverse events. As many as 13% of the patients tested with a sodium blocker developed ventricular arrhythmia. One family member who did not carry the founder mutation was diagnosed with BrS. CONCLUSION: The high prevalence of symptoms and sensitivity to sodium channel blockers in our founder population highlights the adverse effect of the founder mutation on cardiac conduction. The large phenotypical heterogeneity, variable penetrance, and even non-segregation suggest that other genetic (and environmental) factors modify the disease expression, severity, and outcome in these families.


Assuntos
Síndrome de Brugada , Canal de Sódio Disparado por Voltagem NAV1.5 , Bélgica/epidemiologia , Eletrocardiografia , Humanos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Fenótipo
8.
Adv Exp Med Biol ; 1348: 251-264, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34807423

RESUMO

Loeys-Dietz syndrome is an autosomal dominant aortic aneurysm syndrome characterized by multisystemic involvement. The most typical clinical triad includes hypertelorism, bifid uvula or cleft palate and aortic aneurysm with tortuosity. Natural history is significant for aortic dissection at smaller aortic diameter and arterial aneurysms throughout the arterial tree. The genetic cause is heterogeneous and includes mutations in genes encoding for components of the transforming growth factor beta (TGFß) signalling pathway: TGFBR1, TGFBR2, SMAD2, SMAD3, TGFB2 and TGFB3. Despite the loss of function nature of these mutations, the patient-derived aortic tissues show evidence of increased (rather than decreased) TGFß signalling. These insights offer new options for therapeutic interventions.


Assuntos
Dissecção Aórtica , Síndrome de Loeys-Dietz , Humanos , Síndrome de Loeys-Dietz/diagnóstico , Síndrome de Loeys-Dietz/genética , Mutação , Receptores de Fatores de Crescimento Transformadores beta/genética
9.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281165

RESUMO

Thoracic aortic aneurysm and dissection (TAAD) is a major cause of cardiovascular morbidity and mortality. Loss-of-function variants in LOX, encoding the extracellular matrix crosslinking enzyme lysyl oxidase, have been reported to cause familial TAAD. Using a next-generation TAAD gene panel, we identified five additional probands carrying LOX variants, including two missense variants affecting highly conserved amino acids in the LOX catalytic domain and three truncating variants. Connective tissue manifestations are apparent in a substantial fraction of the variant carriers. Some LOX variant carriers presented with TAAD early in life, while others had normal aortic diameters at an advanced age. Finally, we identified the first patient with spontaneous coronary artery dissection carrying a LOX variant. In conclusion, our data demonstrate that loss-of-function LOX variants cause a spectrum of aortic and arterial aneurysmal disease, often combined with connective tissue findings.


Assuntos
Aneurisma da Aorta Torácica/genética , Proteína-Lisina 6-Oxidase/genética , Adulto , Dissecção Aórtica/genética , Dissecção Aórtica/fisiopatologia , Aorta/metabolismo , Aneurisma da Aorta Torácica/fisiopatologia , Artérias/metabolismo , Tecido Conjuntivo/metabolismo , Doenças do Tecido Conjuntivo/genética , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem , Proteína-Lisina 6-Oxidase/metabolismo
10.
J Med Genet ; 56(4): 220-227, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29967133

RESUMO

BACKGROUND: Missense variants in SMAD2, encoding a key transcriptional regulator of transforming growth factor beta signalling, were recently reported to cause arterial aneurysmal disease. OBJECTIVES: The aims of the study were to identify the genetic disease cause in families with aortic/arterial aneurysmal disease and to further define SMAD2 genotype-phenotype correlations. METHODS AND RESULTS: Using gene panel sequencing, we identified a SMAD2 nonsense variant and four SMAD2 missense variants, all affecting highly conserved amino acids in the MH2 domain. The premature stop codon (c.612dup; p.(Asn205*)) was identified in a marfanoid patient with aortic root dilatation and in his affected father. A p.(Asn318Lys) missense variant was found in a Marfan syndrome (MFS)-like case who presented with aortic root aneurysm and in her affected daughter with marfanoid features and mild aortic dilatation. In a man clinically diagnosed with Loeys-Dietz syndrome (LDS) that presents with aortic root dilatation and marked tortuosity of the neck vessels, another missense variant, p.(Ser397Tyr), was identified. This variant was also found in his affected daughter with hypertelorism and arterial tortuosity, as well as his affected mother. The third missense variant, p.(Asn361Thr), was discovered in a man presenting with coronary artery dissection. Variant genotyping in three unaffected family members confirmed its absence. The last missense variant, p.(Ser467Leu), was identified in a man with significant cardiovascular and connective tissue involvement. CONCLUSION: Taken together, our data suggest that heterozygous loss-of-function SMAD2 variants can cause a wide spectrum of autosomal dominant aortic and arterial aneurysmal disease, combined with connective tissue findings reminiscent of MFS and LDS.


Assuntos
Aneurisma/etiologia , Dissecção Aórtica/etiologia , Dissecção Aórtica/patologia , Artérias/patologia , Variação Genética , Proteína Smad2/genética , Adulto , Idoso , Alelos , Substituição de Aminoácidos , Aneurisma/patologia , Criança , Fácies , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Pessoa de Meia-Idade , Mutação , Linhagem , Fenótipo , Proteína Smad2/metabolismo
11.
Am J Hum Genet ; 99(1): 174-87, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27392076

RESUMO

Autosomal-dominant tubulo-interstitial kidney disease (ADTKD) encompasses a group of disorders characterized by renal tubular and interstitial abnormalities, leading to slow progressive loss of kidney function requiring dialysis and kidney transplantation. Mutations in UMOD, MUC1, and REN are responsible for many, but not all, cases of ADTKD. We report on two families with ADTKD and congenital anemia accompanied by either intrauterine growth retardation or neutropenia. Ultrasound and kidney biopsy revealed small dysplastic kidneys with cysts and tubular atrophy with secondary glomerular sclerosis, respectively. Exclusion of known ADTKD genes coupled with linkage analysis, whole-exome sequencing, and targeted re-sequencing identified heterozygous missense variants in SEC61A1-c.553A>G (p.Thr185Ala) and c.200T>G (p.Val67Gly)-both affecting functionally important and conserved residues in SEC61. Both transiently expressed SEC6A1A variants are delocalized to the Golgi, a finding confirmed in a renal biopsy from an affected individual. Suppression or CRISPR-mediated deletions of sec61al2 in zebrafish embryos induced convolution defects of the pronephric tubules but not the pronephric ducts, consistent with the tubular atrophy observed in the affected individuals. Human mRNA encoding either of the two pathogenic alleles failed to rescue this phenotype as opposed to a complete rescue by human wild-type mRNA. Taken together, these findings provide a mechanism by which mutations in SEC61A1 lead to an autosomal-dominant syndromic form of progressive chronic kidney disease. We highlight protein translocation defects across the endoplasmic reticulum membrane, the principal role of the SEC61 complex, as a contributory pathogenic mechanism for ADTKD.


Assuntos
Anemia/genética , Heterozigoto , Nefropatias/genética , Mutação , Canais de Translocação SEC/genética , Adulto , Idoso , Alelos , Sequência de Aminoácidos , Animais , Biópsia , Criança , Doença Crônica , Progressão da Doença , Retículo Endoplasmático/metabolismo , Exoma/genética , Feminino , Retardo do Crescimento Fetal/genética , Genes Dominantes , Complexo de Golgi/metabolismo , Humanos , Recém-Nascido , Nefropatias/patologia , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Neutropenia/genética , Linhagem , Fenótipo , RNA Mensageiro/análise , RNA Mensageiro/genética , Canais de Translocação SEC/química , Síndrome , Adulto Jovem , Peixe-Zebra/embriologia , Peixe-Zebra/genética
12.
Bioinformatics ; 34(13): 2254-2262, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29452392

RESUMO

Motivation: Computational gene prioritization can aid in disease gene identification. Here, we propose pBRIT (prioritization using Bayesian Ridge regression and Information Theoretic model), a novel adaptive and scalable prioritization tool, integrating Pubmed abstracts, Gene Ontology, Sequence similarities, Mammalian and Human Phenotype Ontology, Pathway, Interactions, Disease Ontology, Gene Association database and Human Genome Epidemiology database, into the prediction model. We explore and address effects of sparsity and inter-feature dependencies within annotation sources, and the impact of bias towards specific annotations. Results: pBRIT models feature dependencies and sparsity by an Information-Theoretic (data driven) approach and applies intermediate integration based data fusion. Following the hypothesis that genes underlying similar diseases will share functional and phenotype characteristics, it incorporates Bayesian Ridge regression to learn a linear mapping between functional and phenotype annotations. Genes are prioritized on phenotypic concordance to the training genes. We evaluated pBRIT against nine existing methods, and on over 2000 HPO-gene associations retrieved after construction of pBRIT data sources. We achieve maximum AUC scores ranging from 0.92 to 0.96 against benchmark datasets and of 0.80 against the time-stamped HPO entries, indicating good performance with high sensitivity and specificity. Our model shows stable performance with regard to changes in the underlying annotation data, is fast and scalable for implementation in routine pipelines. Availability and implementation: http://biomina.be/apps/pbrit/; https://bitbucket.org/medgenua/pbrit. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Ontologias Biológicas , Biologia Computacional/métodos , Armazenamento e Recuperação da Informação/métodos , Fenótipo , Software , Animais , Teorema de Bayes , Genômica/métodos , Humanos , Análise de Sequência de DNA/métodos
13.
Connect Tissue Res ; 60(2): 146-154, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29732924

RESUMO

Marfan syndrome (MFS) is a multi-systemic autosomal dominant condition caused by mutations in the gene (FBN1) coding for fibrillin-1. Mutations have been associated with a wide range of overlapping phenotypes. Here, we report on an extended family presenting with skeletal, ocular and cardiovascular clinical features. The 37-year-old male propositus, who had chest pain, dyspnea and shortness of breath, was first diagnosed based on the revised Ghent criteria and then subjected to molecular genetic analyses. FBN1 sequencing of the proband as well as available affected family members revealed the presence of a novel variant, c.7828G>C (p.Glu2610Gln), which was not present in any of the unaffected family members. In silico analyses demonstrated that the Glu2610 residue is part of the conserved DINE motif found at the beginning of each cbEGF domain of FBN1. The substitution of Glu2610 with Gln decreased fibrillin-1 production accordingly. Despite the fact that this variation appears to be primarily responsible for the etiology of MFS in the present family, our findings suggest that variable clinical expressions of the disease phenotype should be considered critically by the physicians.


Assuntos
Fibrilina-1/genética , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Mutação/genética , Adolescente , Adulto , Sequência de Aminoácidos , Sequência de Bases , Criança , Simulação por Computador , Família , Feminino , Fibrilina-1/química , Heterozigoto , Humanos , Masculino , Linhagem , Fenótipo
14.
Hum Mutat ; 39(5): 621-634, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29392890

RESUMO

The Loeys-Dietz syndrome (LDS) is a connective tissue disorder affecting the cardiovascular, skeletal, and ocular system. Most typically, LDS patients present with aortic aneurysms and arterial tortuosity, hypertelorism, and bifid/broad uvula or cleft palate. Initially, mutations in transforming growth factor-ß (TGF-ß) receptors (TGFBR1 and TGFBR2) were described to cause LDS, hereby leading to impaired TGF-ß signaling. More recently, TGF-ß ligands, TGFB2 and TGFB3, as well as intracellular downstream effectors of the TGF-ß pathway, SMAD2 and SMAD3, were shown to be involved in LDS. This emphasizes the role of disturbed TGF-ß signaling in LDS pathogenesis. Since most literature so far has focused on TGFBR1/2, we provide a comprehensive review on the known and some novel TGFB2/3 and SMAD2/3 mutations. For TGFB2 and SMAD3, the clinical manifestations, both of the patients previously described in the literature and our newly reported patients, are summarized in detail. This clearly indicates that LDS concerns a disorder with a broad phenotypical spectrum that is still emerging as more patients will be identified. All mutations described here are present in the corresponding Leiden Open Variant Database.


Assuntos
Estudos de Associação Genética , Síndrome de Loeys-Dietz/genética , Mutação/genética , Proteína Smad2/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta3/genética , Animais , Modelos Animais de Doenças , Humanos , Síndrome de Loeys-Dietz/diagnóstico , Camundongos , Transdução de Sinais/genética
15.
Hum Mutat ; 39(9): 1246-1261, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29924900

RESUMO

Adams-Oliver syndrome (AOS) is a rare developmental disorder, characterized by scalp aplasia cutis congenita (ACC) and transverse terminal limb defects (TTLD). Autosomal dominant forms of AOS are linked to mutations in ARHGAP31, DLL4, NOTCH1 or RBPJ, while DOCK6 and EOGT underlie autosomal recessive inheritance. Data on the frequency and distribution of mutations in large cohorts are currently limited. The purpose of this study was therefore to comprehensively examine the genetic architecture of AOS in an extensive cohort. Molecular diagnostic screening of 194 AOS/ACC/TTLD probands/families was conducted using next-generation and/or capillary sequencing analyses. In total, we identified 63 (likely) pathogenic mutations, comprising 56 distinct and 22 novel mutations, providing a molecular diagnosis in 30% of patients. Taken together with previous reports, these findings bring the total number of reported disease variants to 63, with a diagnostic yield of 36% in familial cases. NOTCH1 is the major contributor, underlying 10% of AOS/ACC/TTLD cases, with DLL4 (6%), DOCK6 (6%), ARHGAP31 (3%), EOGT (3%), and RBPJ (2%) representing additional causality in this cohort. We confirm the relevance of genetic screening across the AOS/ACC/TTLD spectrum, highlighting preliminary but important genotype-phenotype correlations. This cohort offers potential for further gene identification to address missing heritability.


Assuntos
Displasia Ectodérmica/genética , Deformidades Congênitas dos Membros/genética , Dermatoses do Couro Cabeludo/congênito , Proteínas rho de Ligação ao GTP/genética , Displasia Ectodérmica/fisiopatologia , Extremidades/fisiopatologia , Feminino , Estudos de Associação Genética , Humanos , Deformidades Congênitas dos Membros/fisiopatologia , Masculino , Mutação , Linhagem , Receptores Notch/genética , Couro Cabeludo/fisiopatologia , Dermatoses do Couro Cabeludo/genética , Dermatoses do Couro Cabeludo/fisiopatologia
16.
Am J Hum Genet ; 97(5): 761-8, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26522469

RESUMO

S-adenosylmethionine (SAM) is the predominant methyl group donor and has a large spectrum of target substrates. As such, it is essential for nearly all biological methylation reactions. SAM is synthesized by methionine adenosyltransferase from methionine and ATP in the cytoplasm and subsequently distributed throughout the different cellular compartments, including mitochondria, where methylation is mostly required for nucleic-acid modifications and respiratory-chain function. We report a syndrome in three families affected by reduced intra-mitochondrial methylation caused by recessive mutations in the gene encoding the only known mitochondrial SAM transporter, SLC25A26. Clinical findings ranged from neonatal mortality resulting from respiratory insufficiency and hydrops to childhood acute episodes of cardiopulmonary failure and slowly progressive muscle weakness. We show that SLC25A26 mutations cause various mitochondrial defects, including those affecting RNA stability, protein modification, mitochondrial translation, and the biosynthesis of CoQ10 and lipoic acid.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Proteínas de Ligação ao Cálcio/genética , Metilação de DNA , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Debilidade Muscular/genética , Mutação/genética , S-Adenosilmetionina/metabolismo , Sequência de Aminoácidos , Pré-Escolar , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Debilidade Muscular/patologia , Linhagem , Prognóstico , Estabilidade de RNA , Homologia de Sequência de Aminoácidos , Ácido Tióctico/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
17.
Am J Hum Genet ; 97(3): 475-82, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26299364

RESUMO

Adams-Oliver syndrome (AOS) is a rare developmental disorder characterized by the presence of aplasia cutis congenita (ACC) of the scalp vertex and terminal limb-reduction defects. Cardiovascular anomalies are also frequently observed. Mutations in five genes have been identified as a cause for AOS prior to this report. Mutations in EOGT and DOCK6 cause autosomal-recessive AOS, whereas mutations in ARHGAP31, RBPJ, and NOTCH1 lead to autosomal-dominant AOS. Because RBPJ, NOTCH1, and EOGT are involved in NOTCH signaling, we hypothesized that mutations in other genes involved in this pathway might also be implicated in AOS pathogenesis. Using a candidate-gene-based approach, we prioritized DLL4, a critical NOTCH ligand, due to its essential role in vascular development in the context of cardiovascular features in AOS-affected individuals. Targeted resequencing of the DLL4 gene with a custom enrichment panel in 89 independent families resulted in the identification of seven mutations. A defect in DLL4 was also detected in two families via whole-exome or genome sequencing. In total, nine heterozygous mutations in DLL4 were identified, including two nonsense and seven missense variants, the latter encompassing four mutations that replace or create cysteine residues, which are most likely critical for maintaining structural integrity of the protein. Affected individuals with DLL4 mutations present with variable clinical expression with no emerging genotype-phenotype correlations. Our findings demonstrate that DLL4 mutations are an additional cause of autosomal-dominant AOS or isolated ACC and provide further evidence for a key role of NOTCH signaling in the etiology of this disorder.


Assuntos
Displasia Ectodérmica/genética , Displasia Ectodérmica/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/patologia , Mutação/genética , Dermatoses do Couro Cabeludo/congênito , Transdução de Sinais/genética , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Ligação ao Cálcio , Heterozigoto , Humanos , Dados de Sequência Molecular , Linhagem , Receptores Notch/genética , Dermatoses do Couro Cabeludo/genética , Dermatoses do Couro Cabeludo/patologia , Análise de Sequência de DNA
18.
BMC Med Genet ; 19(1): 140, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089473

RESUMO

BACKGROUND: Mutations in the X-linked gene filamin A (FLNA), encoding the actin-binding protein FLNA, cause a wide spectrum of connective tissue, skeletal, cardiovascular and/or gastrointestinal manifestations. Males are typically more severely affected than females with common pre- or perinatal death. CASE PRESENTATION: We provide a genotype- and phenotype-oriented literature overview of FLNA hemizygous mutations and report on two live-born male FLNA mutation carriers. Firstly, we identified a de novo, missense mutation (c.238C > G, p.(Leu80Val)) in a five-year old Indian boy who presented with periventricular nodular heterotopia, increased skin laxity, joint hypermobility, mitral valve prolapse with regurgitation and marked facial features (e.g. a flat face, orbital fullness, upslanting palpebral fissures and low-set ears). Secondly, we identified two cis-located FLNA mutations (c.7921C > G, p.(Pro2641Ala); c.7923delC, p.(Tyr2642Thrfs*63)) in a Bosnian patient with Ehlers-Danlos syndrome-like features such as skin translucency and joint hypermobility. This patient also presented with brain anomalies, pectus excavatum, mitral valve prolapse, pulmonary hypertension and dilatation of the pulmonary arteries. He died from heart failure in his second year of life. CONCLUSIONS: These two new cases expand the list of live-born FLNA mutation-positive males with connective tissue disease from eight to ten, contributing to a better knowledge of the genetic and phenotypic spectrum of FLNA-related disease.


Assuntos
Doenças do Tecido Conjuntivo/genética , Filaminas/metabolismo , Mutação/genética , Adolescente , Adulto , Criança , Pré-Escolar , Tecido Conjuntivo/metabolismo , Síndrome de Ehlers-Danlos/genética , Genes Ligados ao Cromossomo X/genética , Genótipo , Humanos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Adulto Jovem
19.
N Engl J Med ; 370(3): 245-53, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24325358

RESUMO

The gray platelet syndrome is a hereditary, usually autosomal recessive bleeding disorder caused by a deficiency of alpha granules in platelets. We detected a nonsense mutation in the gene encoding the transcription factor GFI1B (growth factor independent 1B) that causes autosomal dominant gray platelet syndrome. Both gray platelets and megakaryocytes had abnormal marker expression. In addition, the megakaryocytes had dysplastic features, and they were abnormally distributed in the bone marrow. The GFI1B mutant protein inhibited nonmutant GFI1B transcriptional activity in a dominant-negative manner. Our studies show that GFI1B, in addition to being causally related to the gray platelet syndrome, is key to megakaryocyte and platelet development.


Assuntos
Plaquetas/patologia , Síndrome da Plaqueta Cinza/genética , Megacariócitos/patologia , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Medula Óssea/patologia , Feminino , Genes Dominantes , Síndrome da Plaqueta Cinza/patologia , Humanos , Masculino , Linhagem , Células-Tronco , Trombocitopenia/genética
20.
Genet Med ; 19(4): 386-395, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27632686

RESUMO

PURPOSE: Thoracic aortic aneurysm and dissection (TAAD) is typically inherited in an autosomal dominant manner, but rare X-linked families have been described. So far, the only known X-linked gene is FLNA, which is associated with the periventricular nodular heterotopia type of Ehlers-Danlos syndrome. However, mutations in this gene explain only a small number of X-linked TAAD families. METHODS: We performed targeted resequencing of 368 candidate genes in a cohort of 11 molecularly unexplained Marfan probands. Subsequently, Sanger sequencing of BGN in 360 male and 155 female molecularly unexplained TAAD probands was performed. RESULTS: We found five individuals with loss-of-function mutations in BGN encoding the small leucine-rich proteoglycan biglycan. The clinical phenotype is characterized by early-onset aortic aneurysm and dissection. Other recurrent findings include hypertelorism, pectus deformity, joint hypermobility, contractures, and mild skeletal dysplasia. Fluorescent staining revealed an increase in TGF-ß signaling, evidenced by an increase in nuclear pSMAD2 in the aortic wall. Our results are in line with those of prior reports demonstrating that Bgn-deficient male BALB/cA mice die from aortic rupture. CONCLUSION: In conclusion, BGN gene defects in humans cause an X-linked syndromic form of severe TAAD that is associated with preservation of elastic fibers and increased TGF-ß signaling.Genet Med 19 4, 386-395.


Assuntos
Aneurisma da Aorta Torácica/genética , Dissecção Aórtica/genética , Biglicano/genética , Mutação , Dissecção Aórtica/metabolismo , Aneurisma da Aorta Torácica/metabolismo , Biglicano/metabolismo , Células Cultivadas , Feminino , Genes Ligados ao Cromossomo X , Predisposição Genética para Doença , Humanos , Masculino , Linhagem , Análise de Sequência de DNA/métodos , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA