Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Biol Chem ; 294(45): 16966-16977, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31582562

RESUMO

DNMT3A (DNA methyltransferase 3A) is a de novo DNA methyltransferase responsible for establishing CpG methylation patterns within the genome. DNMT3A activity is essential for normal development, and its dysfunction has been linked to developmental disorders and cancer. DNMT3A is frequently mutated in myeloid malignancies with the majority of mutations occurring at Arg-882, where R882H mutations are most frequent. The R882H mutation causes a reduction in DNA methyltransferase activity and hypomethylation at differentially-methylated regions within the genome, ultimately preventing hematopoietic stem cell differentiation and leading to leukemogenesis. Although the means by which the R882H DNMT3A mutation reduces enzymatic activity has been the subject of several studies, the precise mechanism by which this occurs has been elusive. Herein, we demonstrate that in the context of the full-length DNMT3A protein, the R882H mutation stabilizes the formation of large oligomeric DNMT3A species to reduce the overall DNA methyltransferase activity of the mutant protein as well as the WT-R882H complex in a dominant-negative manner. This shift in the DNMT3A oligomeric equilibrium and the resulting reduced enzymatic activity can be partially rescued in the presence of oligomer-disrupting DNMT3L, as well as DNMT3A point mutations along the oligomer-forming interface of the catalytic domain. In addition to modulating the oligomeric state of DNMT3A, the R882H mutation also leads to a DNA-binding defect, which may further reduce enzymatic activity. These findings provide a mechanistic explanation for the observed loss of DNMT3A activity associated with the R882H hot spot mutation in cancer.


Assuntos
DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/metabolismo , Mutação , Multimerização Proteica , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Humanos , Modelos Moleculares , Estrutura Quaternária de Proteína
2.
bioRxiv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38659798

RESUMO

Splice site recognition is essential for defining the transcriptome. Drugs like risdiplam and branaplam change how U1 snRNP recognizes particular 5' splice sites (5'SS) and promote U1 snRNP binding and splicing at these locations. Despite the therapeutic potential of 5'SS modulators, the complexity of their interactions and snRNP substrates have precluded defining a mechanism for 5'SS modulation. We have determined a sequential binding mechanism for modulation of -1A bulged 5'SS by branaplam using a combination of ensemble kinetic measurements and colocalization single molecule spectroscopy (CoSMoS). Our mechanism establishes that U1-C protein binds reversibly to U1 snRNP, and branaplam binds to the U1 snRNP/U1-C complex only after it has engaged a -1A bulged 5'SS. Obligate orders of binding and unbinding explain how reversible branaplam interactions cause formation of long-lived U1 snRNP/5'SS complexes. Branaplam is a ribonucleoprotein, not RNA duplex alone, targeting drug whose action depends on fundamental properties of 5'SS recognition.

3.
Antimicrob Agents Chemother ; 57(7): 3358-68, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23650168

RESUMO

Human rhinovirus (HRV) is the predominant cause of the common cold, but more importantly, infection may have serious repercussions in asthmatics and chronic obstructive pulmonary disorder (COPD) patients. A cell-based antiviral screen against HRV was performed with a subset of our proprietary compound collection, and an aminothiazole series with pan-HRV species and enteroviral activity was identified. The series was found to act at the level of replication in the HRV infectious cycle. In vitro selection and sequencing of aminothiazole series-resistant HRV variants revealed a single-nucleotide mutation leading to the amino acid change I42V in the essential HRV 3A protein. This same mutation has been previously implicated in resistance to enviroxime, a former clinical-stage antipicornavirus agent. Enviroxime-like compounds have recently been shown to target the lipid kinase phosphatidylinositol 4-kinase III beta (PI4KIIIß). A good correlation between PI4KIIIß activity and HRV antiviral potency was found when analyzing the data over 80 compounds of the aminothiazole series, covering a 750-fold potency range. The mechanism of action through PI4KIIIß inhibition was further demonstrated by small interfering RNA (siRNA) knockdown of PI4KB, which reduced HRV replication and also increased the potency of the PI4KIIIß inhibitors. Inhibitors from two different structural classes with promising pharmacokinetic profiles and with very good selectivity for PI4KIIIß were used to dissociate compound-related toxicity from target-related toxicity. Mortality was seen in all dosing groups of mice treated with either compound, therefore suggesting that short-term inhibition of PI4KIIIß is deleterious.


Assuntos
1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Cefalosporinas/farmacologia , Rhinovirus/efeitos dos fármacos , Rhinovirus/enzimologia , Tiazóis/farmacologia , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Animais , Antivirais/farmacologia , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Resfriado Comum/tratamento farmacológico , Resfriado Comum/virologia , Feminino , Células HeLa , Humanos , Camundongos , Oximas , Polimorfismo de Nucleotídeo Único , Interferência de RNA , RNA Interferente Pequeno , Rhinovirus/crescimento & desenvolvimento , Sulfonamidas , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
4.
J Virol ; 86(21): 11595-607, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22896614

RESUMO

Phosphatidylinositol-4-kinase IIIα (PI4KIIIα) is an essential host cell factor for hepatitis C virus (HCV) replication. An N-terminally truncated 130-kDa form was used to reconstitute an in vitro biochemical lipid kinase assay that was optimized for small-molecule compound screening and identified potent and specific inhibitors. Cell culture studies with PI4KIIIα inhibitors demonstrated that the kinase activity was essential for HCV RNA replication. Two PI4KIIIα inhibitors were used to select cell lines harboring HCV replicon mutants with a 20-fold loss in sensitivity to the compounds. Reverse genetic mapping isolated an NS4B-NS5A segment that rescued HCV RNA replication in PIK4IIIα-deficient cells. HCV RNA replication occurs on specialized membranous webs, and this study with PIK4IIIα inhibitor-resistant mutants provides a genetic link between NS4B/NS5A functions and PI4-phosphate lipid metabolism. A comprehensive assessment of PI4KIIIα as a drug target included its evaluation for pharmacologic intervention in vivo through conditional transgenic murine lines that mimic target-specific inhibition in adult mice. Homozygotes that induce a knockout of the kinase domain or knock in a single amino acid substitution, kinase-defective PI4KIIIα, displayed a lethal phenotype with a fairly widespread mucosal epithelial degeneration of the gastrointestinal tract. This essential host physiologic role raises doubt about the pursuit of PI4KIIIα inhibitors for treatment of chronic HCV infection.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno , Replicação Viral , 1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Animais , Antivirais/farmacologia , Linhagem Celular , Análise Mutacional de DNA , Farmacorresistência Viral , Inibidores Enzimáticos/farmacologia , Feminino , Genes Essenciais , Hepatócitos/enzimologia , Hepatócitos/virologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Mutantes/genética , Proteínas não Estruturais Virais/genética
5.
Nature ; 440(7082): 368-71, 2006 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-16541079

RESUMO

Non-haem Fe(II)/alpha-ketoglutarate (alphaKG)-dependent enzymes harness the reducing power of alphaKG to catalyse oxidative reactions, usually the hydroxylation of unactivated carbons, and are involved in processes such as natural product biosynthesis, the mammalian hypoxic response, and DNA repair. These enzymes couple the decarboxylation of alphaKG with the formation of a high-energy ferryl-oxo intermediate that acts as a hydrogen-abstracting species. All previously structurally characterized mononuclear iron enzymes contain a 2-His, 1-carboxylate motif that coordinates the iron. The two histidines and one carboxylate, known as the 'facial triad', form one triangular side of an octahedral iron coordination geometry. A subclass of mononuclear iron enzymes has been shown to catalyse halogenation reactions, rather than the more typical hydroxylation reaction. SyrB2, a member of this subclass, is a non-haem Fe(II)/alphaKG-dependent halogenase that catalyses the chlorination of threonine in syringomycin E biosynthesis. Here we report the structure of SyrB2 with both a chloride ion and alphaKG coordinated to the iron ion at 1.6 A resolution. This structure reveals a previously unknown coordination of iron, in which the carboxylate ligand of the facial triad is replaced by a chloride ion.


Assuntos
Proteínas de Bactérias/biossíntese , Ferro/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Pseudomonas syringae/enzimologia , Proteínas de Bactérias/química , Sítios de Ligação , Cloretos/metabolismo , Cristalografia por Raios X , Histidina/metabolismo , Ácidos Cetoglutáricos/metabolismo , Ligantes , Modelos Moleculares , Conformação Proteica , Pseudomonas syringae/classificação , Pseudomonas syringae/metabolismo
6.
Trends Pharmacol Sci ; 43(5): 437-454, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35331569

RESUMO

The production of a mature mRNA requires coordination of multiple processing steps, which ultimately control its content, localization, and stability. These steps include some of the largest macromolecular machines in the cell, which were, until recently, considered undruggable due to their biological complexity. Building from an expanded understanding of the underlying mechanisms that drive these processes, a new wave of therapeutics is seeking to target RNA processing. With a focus on impacting gene regulation at the RNA level, such modalities offer potential for sequence-specific resolution in drug design. Here, we review our current understanding of RNA-processing events and their role in gene regulation, with a focus on the therapeutic opportunities that have emerged within this landscape.


Assuntos
Oligonucleotídeos Antissenso , Processamento Pós-Transcricional do RNA , Regulação da Expressão Gênica , Humanos , Oligonucleotídeos Antissenso/uso terapêutico , RNA/genética , RNA Mensageiro
7.
Mol Cancer Ther ; 21(6): 890-902, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642432

RESUMO

Nearly 30% of patients with relapsed breast cancer present activating mutations in estrogen receptor alpha (ERα) that confer partial resistance to existing endocrine-based therapies. We previously reported the development of H3B-5942, a covalent ERα antagonist that engages cysteine-530 (C530) to achieve potency against both wild-type (ERαWT) and mutant ERα (ERαMUT). Anticipating that the emergence of C530 mutations could promote resistance to H3B-5942, we applied structure-based drug design to improve the potency of the core scaffold to further enhance the antagonistic activity in addition to covalent engagement. This effort led to the development of the clinical candidate H3B-6545, a covalent antagonist that is potent against both  ERαWT/MUT, and maintains potency even in the context of ERα C530 mutations. H3B-6545 demonstrates significant activity and superiority over standard-of-care fulvestrant across a panel of ERαWT and ERαMUT palbociclib sensitive and resistant models. In summary, the compelling preclinical activity of H3B-6545 supports its further development for the potential treatment of endocrine therapy-resistant ERα+ breast cancer harboring wild-type or mutant ESR1, as demonstrated by the ongoing clinical trials (NCT03250676, NCT04568902, NCT04288089). SUMMARY: H3B-6545 is an ERα covalent antagonist that exhibits encouraging preclinical activity against CDK4/6i naïve and resistant ERαWT and ERαMUT tumors.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ensaios Clínicos como Assunto , Receptor alfa de Estrogênio/genética , Feminino , Fulvestranto/uso terapêutico , Humanos , Indazóis , Recidiva Local de Neoplasia , Piridinas
8.
Nature ; 436(7054): 1191-4, 2005 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16121186

RESUMO

Enzymatic incorporation of chlorine, bromine or iodine atoms occurs during the biosynthesis of more than 4,000 natural products. Halogenation can have significant consequences for the bioactivity of these products so there is great interest in understanding the biological catalysts that perform these reactions. Enzymes that halogenate unactivated aliphatic groups have not previously been characterized. Here we report the activity of five proteins-CmaA, CmaB, CmaC, CmaD and CmaE-in the construction of coronamic acid (CMA; 1-amino-1-carboxy-2-ethylcyclopropane), a constituent of the phytotoxin coronatine synthesized by the phytopathogenic bacterium Pseudomonas syringae. CMA derives from l-allo-isoleucine, which is covalently attached to CmaD through the actions of CmaA, a non-ribosomal peptide synthetase module, and CmaE, an unusual acyltransferase. We show that CmaB, a member of the non-haem Fe(2+), alpha-ketoglutarate-dependent enzyme superfamily, is the first of its class to show halogenase activity, chlorinating the gamma-position of l-allo-isoleucine. Another previously undescribed enzyme, CmaC, catalyses the formation of the cyclopropyl ring from the gamma-Cl-l-allo-isoleucine product of the CmaB reaction. Together, CmaB and CmaC execute gamma-halogenation followed by intramolecular gamma-elimination, in which biological chlorination is a cryptic strategy for cyclopropyl ring formation.


Assuntos
Aminoácidos/biossíntese , Proteínas de Bactérias/metabolismo , Cloro/metabolismo , Enzimas/química , Enzimas/metabolismo , Ferro/metabolismo , Aciltransferases/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Proteínas de Bactérias/química , Catálise , Heme , Indenos/química , Indenos/metabolismo , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Pseudomonas syringae/metabolismo , Valina/metabolismo
9.
ACS Med Chem Lett ; 11(6): 1305-1309, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32551016

RESUMO

Carbamoyl phosphate synthetase 1 (CPS1) is a potential synthetic lethal target in LKB1-deficient nonsmall cell lung cancer, where its overexpression supports the production of pyrimidine synthesis. In other cancer types, CPS1 overexpression and activity may prevent the accumulation of toxic levels of intratumoral ammonia to support tumor growth. Herein we report the discovery of a novel series of potent and selective small-molecule inhibitors of CPS1. Piperazine 2 was initially identified as a promising CPS1 inhibitor through a high-throughput screening effort. Subsequent structure-activity relationship optimization and structure-based drug design led to the discovery of piperazine H3B-616 (25), a potent allosteric inhibitor of CPS1 (IC50 = 66 nM).

10.
Cell Chem Biol ; 27(3): 259-268.e5, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32017919

RESUMO

Carbamoyl phosphate synthetase 1 (CPS1) catalyzes the first step in the ammonia-detoxifying urea cycle, converting ammonia to carbamoyl phosphate under physiologic conditions. In cancer, CPS1 overexpression supports pyrimidine synthesis to promote tumor growth in some cancer types, while in others CPS1 activity prevents the buildup of toxic levels of intratumoral ammonia to allow for sustained tumor growth. Targeted CPS1 inhibitors may, therefore, provide a therapeutic benefit for cancer patients with tumors overexpressing CPS1. Herein, we describe the discovery of small-molecule CPS1 inhibitors that bind to a previously unknown allosteric pocket to block ATP hydrolysis in the first step of carbamoyl phosphate synthesis. CPS1 inhibitors are active in cellular assays, blocking both urea synthesis and CPS1 support of the pyrimidine biosynthetic pathway, while having no activity against CPS2. These newly discovered CPS1 inhibitors are a first step toward providing researchers with valuable tools for probing CPS1 cancer biology.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Piperidinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Tiazóis/farmacologia , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Carbamoil-Fosfato Sintase (Amônia)/genética , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Humanos , Hidrólise/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Piperidinas/química , Bibliotecas de Moléculas Pequenas/química , Tiazóis/química
11.
Biochemistry ; 48(20): 4331-43, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19245217

RESUMO

Aliphatic halogenases activate O(2), cleave alpha-ketoglutarate (alphaKG) to CO(2) and succinate, and form haloferryl [X-Fe(IV)O; X = Cl or Br] complexes that cleave aliphatic C-H bonds to install halogens during the biosynthesis of natural products by non-ribosomal peptide synthetases (NRPSs). For the related alphaKG-dependent dioxygenases, it has been shown that reaction of the Fe(II) cofactor with O(2) to form the C-H bond-cleaving ferryl complex is "triggered" by binding of the target substrate. In this study, we have tested for and defined structural determinants of substrate triggering (ST) in the halogenase, SyrB2, from the syringomycin E biosynthetic NRPS of Pseudomonas syringae B301D. As for other halogenases, the substrate of SyrB2 is complex, consisting of l-Thr tethered via a thioester linkage to a covalently bound phosphopantetheine (PPant) cofactor of a carrier protein, SyrB1. Without an appended amino acid, SyrB1 does not trigger formation of the chloroferryl intermediate state in SyrB2, even in the presence of free l-Thr or its analogues, but SyrB1 charged either by l-Thr (l-Thr-S-SyrB1) or by any of several non-native amino acids does trigger the reaction by as much as 8000-fold (for the native substrate). Triggering efficacy is sensitive to the structures of both the amino acid and the carrier protein, being diminished by 5-24-fold when the native l-Thr is replaced with another amino acid and by approximately 40-fold when SyrB1 is replaced with the heterologous carrier protein, CytC2. The directing effect of the carrier protein and consequent tolerance for profound modifications to the target amino acid allow the chloroferryl state to be formed in the presence of substrates that perturb the ratio of its two putative coordination isomers, lack the target C-H bond (l-Ala-S-SyrB1), or contain a C-H bond of enhanced strength (l-cyclopropylglycyl-S-SyrB1). For the latter two cases, the SyrB2 chloroferryl state so formed exhibits unprecedented stability (t(1/2) = 30-110 min at 0 degree C), can be trapped at high concentration and purity by manual freezing without a cryosolvent, and represents an ideal target for structural characterization. As initial steps toward this goal, extended X-ray absorption fine structure (EXAFS) spectroscopy has been used to determine the Fe-O and Fe-Cl distances and density functional theory (DFT) calculations have been used to confirm that the measured distances are consistent with the anticipated structure of the intermediate.


Assuntos
Carbono/química , Hidrogênio/química , Oxirredutases/química , Catálise , Cristalografia por Raios X , Cinética , Estrutura Molecular , Oxigênio/química , Oxigenases/química , Pseudomonas syringae/metabolismo , Espectrofotometria/métodos , Especificidade por Substrato , Temperatura , Fatores de Tempo
12.
Chem Biol ; 14(1): 31-40, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17254950

RESUMO

Syringomycin, a lipopeptidolactone assembled from nine amino acid monomers by four enzymes, SyrB1, SyrB2, SyrC, and SyrE, is a cyclic nonribosomal peptide made by plant-associated Pseudomonas spp. This assembly is unusual because the terminal residue, 4-chlorothreonine, has been proposed to be added in trans since the ninth module of the megasynthetase SyrE lacks an adenylation domain required for Thr/Cl-Thr activation. SyrC is now identified as a Thr/Cl-Thr aminoacyltransferase, shuttling the Thr/Cl-Thr moiety between the pantetheinyl arms of the thiolation domain of SyrB1 and the thiolation domain in module nine of SyrE. SyrC uses Cys224 as a catalytic nucleophile to generate a Thr/Cl-Thr-S-enzyme intermediate during transfer. SyrC joins a growing family of such aminoacyl-shuttling enzymes that also use covalent catalysis to move aminoacyl groups from carrier proteins during coumermycin and coronamic acid biosynthesis.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Peptídeo Sintases/metabolismo , Treonina/metabolismo , Transporte Biológico , Pseudomonas syringae/enzimologia , Treonina/análogos & derivados
13.
Cancer Discov ; 8(9): 1176-1193, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29991605

RESUMO

Mutations in estrogen receptor alpha (ERα) that confer resistance to existing classes of endocrine therapies are detected in up to 30% of patients who have relapsed during endocrine treatments. Because a significant proportion of therapy-resistant breast cancer metastases continue to be dependent on ERα signaling, there remains a critical need to develop the next generation of ERα antagonists that can overcome aberrant ERα activity. Through our drug-discovery efforts, we identified H3B-5942, which covalently inactivates both wild-type and mutant ERα by targeting Cys530 and enforcing a unique antagonist conformation. H3B-5942 belongs to a class of ERα antagonists referred to as selective estrogen receptor covalent antagonists (SERCA). In vitro comparisons of H3B-5942 with standard-of-care (SoC) and experimental agents confirmed increased antagonist activity across a panel of ERαWT and ERαMUT cell lines. In vivo, H3B-5942 demonstrated significant single-agent antitumor activity in xenograft models representing ERαWT and ERαY537S breast cancer that was superior to fulvestrant. Lastly, H3B-5942 potency can be further improved in combination with CDK4/6 or mTOR inhibitors in both ERαWT and ERαMUT cell lines and/or tumor models. In summary, H3B-5942 belongs to a class of orally available ERα covalent antagonists with an improved profile over SoCs.Significance: Nearly 30% of endocrine therapy-resistant breast cancer metastases harbor constitutively activating mutations in ERα. SERCA H3B-5942 engages C530 of both ERαWT and ERαMUT, promotes a unique antagonist conformation, and demonstrates improved in vitro and in vivo activity over SoC agents. Importantly, single-agent efficacy can be further enhanced by combining with CDK4/6 or mTOR inhibitors. Cancer Discov; 8(9); 1176-93. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 1047.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antagonistas do Receptor de Estrogênio/administração & dosagem , Receptor alfa de Estrogênio/antagonistas & inibidores , Indazóis/administração & dosagem , Mutação , Administração Oral , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisteína/antagonistas & inibidores , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Antagonistas do Receptor de Estrogênio/química , Antagonistas do Receptor de Estrogênio/farmacologia , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Indazóis/química , Indazóis/farmacologia , Células MCF-7 , Camundongos , Conformação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Chem Biol ; 13(11): 1183-91, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17114000

RESUMO

Four adjacent open reading frames, cytC1-C4, were cloned from a cytotrienin-producing strain of a Streptomyces sp. by using primers derived from the conserved region of a gene encoding a nonheme iron halogenase, CmaB, in coronamic acid biosynthesis. CytC1-3 were active after expression in Escherichia coli, and CytC4 was active after expression in Pseudomonas putida. CytC1, a relatively promiscuous adenylation enzyme, installs the aminoacyl moieties on the phosphopantetheinyl arm of the holo carrier protein CytC2. CytC3 is a nonheme iron halogenase that will generate both gamma-chloro- and gamma,gamma-dichloroaminobutyryl-S-CytC2 from aminobutyryl-S-CytC2. CytC4, a thioesterase, hydrolytically releases the dichloroaminobutyrate, a known streptomycete antibiotic. Thus, this short four-protein pathway is likely the biosynthetic source of this amino acid antimetabolite. This four-enzyme system analogously converts the proS-methyl group of valine to the dichloromethyl product regio- and stereospecifically.


Assuntos
Antimetabólitos/metabolismo , Proteínas de Bactérias/metabolismo , Butiratos/metabolismo , Streptomyces/metabolismo , Proteínas de Bactérias/genética , Clonagem Molecular , Escherichia coli/metabolismo , Família Multigênica , Peptídeo Sintases/metabolismo , Pseudomonas putida/metabolismo
15.
Chem Biol ; 12(11): 1189-200, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16298298

RESUMO

The first 6 residues of the biosurfactant lipopeptidolactone arthrofactin have the D configuration, yet none of the 11 modules of the nonribosomal peptide synthetase assembly line have epimerization domains. We show that the two-module ArfA subunit and the first module of the ArfB subunit, which act in tandem to produce the N-acyl-D-Leu1-D-Asp2-D-Thr3-S-protein intermediate, activate the L amino acids and epimerize them as the aminoacyl-S-pantetheinyl T domain intermediates before the next downstream condensation. The condensation (C) domains are shown to have (D)C(L) chirality in peptide bond formation. The upstream aminoacyl/peptidyl moiety is epimerized before condensation only when the condensation domains are simultaneously presented with the L-aminoacyl-S-pantetheinyl acceptor. These (D)C(L) catalysts are dual function condensation/epimerization domains that can be predicted by bioinformatics analysis to be responsible for incorporation of all D residues in arthrofactin and of D residues in syringomycin, syringopeptin, and ramoplanin synthetases.


Assuntos
Aminoácidos/química , Aminoácidos/metabolismo , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Acetilação , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Expressão Gênica , Ligases/química , Ligases/genética , Ligases/metabolismo , Lipopeptídeos , Dados de Sequência Molecular , Estrutura Molecular , Peptídeos Cíclicos/genética , Filogenia , Pseudomonas/genética , Racemases e Epimerases/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Estereoisomerismo
16.
Biochem J ; 386(Pt 2): 305-14, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15479158

RESUMO

HGO (homogentisate 1,2-dioxygenase; EC 1.13.11.5) catalyses the O2-dependent cleavage of HGA (homogentisate) to maleylacetoacetate in the catabolism of tyrosine. Anaerobic purification of heterologously expressed Fe(II)-containing human HGO yielded an enzyme preparation with a specific activity of 28.3+/- 0.6 micromol x min(-1) x mg(-1) (20 mM Mes, 80 mM NaCl, pH 6.2, 25 degrees C), which is almost twice that of the most active preparation described to date. Moreover, the addition of reducing agents or other additives did not increase the specific activity, in contrast with previous reports. The apparent specificity of HGO for HGA was highest at pH 6.2 and the steady-state cleavage of HGA fit a compulsory-order ternary-complex mechanism (K(m) value of 28.6+/-6.2 microM for HGA, K(m) value of 1240+/-160 microM for O2). Free HGO was subject to inactivation in the presence of O2 and during the steady-state cleavage of HGA. Both cases involved the oxidation of the active site Fe(II). 3-Cl HGA, a potential inhibitor of HGO, and its isosteric analogue, 3-Me HGO, were synthesized. At saturating substrate concentrations, HGO cleaved 3-Me and 3-Cl HGA 10 and 100 times slower than HGA respectively. The apparent specificity of HGO for HGA was approx. two orders of magnitude higher than for either 3-Me or 3-Cl HGA. Interestingly, 3-Cl HGA inactivated HGO only twice as rapidly as HGA. This contrasts with what has been observed in mechanistically related dioxygenases, which are rapidly inactivated by chlorinated substrate analogues, such as 3-hydroxyanthranilate dioxygenase by 4-Cl 3-hydroxyanthranilate.


Assuntos
Dioxigenases/antagonistas & inibidores , Dioxigenases/metabolismo , Anaerobiose , Dioxigenases/química , Dioxigenases/genética , Inibidores Enzimáticos/metabolismo , Estabilidade Enzimática , Escherichia coli K12/enzimologia , Escherichia coli K12/genética , Homogentisato 1,2-Dioxigenase , Ácido Homogentísico/análogos & derivados , Ácido Homogentísico/metabolismo , Humanos , Cinética , Maleatos/metabolismo , Oxigênio/metabolismo , Plasmídeos/genética , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Especificidade por Substrato , Transfecção/métodos
17.
Chem Biol ; 11(9): 1195-203, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15380180

RESUMO

3,5-Dihydroxyphenylglycine is a crucial amino acid monomer in the nonribosomal glycopeptide antibiotic vancomycin. This nonproteinogenic amino acid is constructed from malonyl-CoA by a set of four enzymes, DpgA-D, in the biosynthetic cluster. DpgC is an unusual metal-free, cofactor-free enzyme that consumes O(2) during the conversion of 3,5-dihydroxyphenylacetyl-CoA (DPA-CoA) to the penultimate intermediate 3,5-dihydroxyphenylglyoxylate (DPGx). We show that in anaerobic incubations, DpgC catalyzes the exchange of the C(2)-methylene hydrogens of DPA-CoA at unequal rates, consistent with enzyme-mediated formation of the substrate-derived C(2)-carbanion as an early intermediate. Incubations with (18)O(2) reveal that DpgC transfers both atoms of an O(2) molecule to DPGx product. This establishes DpgC as a 1,2-dioxygenase that mediates thioester cleavage by the oxygen transfer process. These results are consistent with a DPA-CoA C(2)-peroxy intermediate, followed by enzyme-directed alpha-peroxylactone formation and collapse by O-O bond cleavage.


Assuntos
Dioxigenases/metabolismo , Vancomicina/biossíntese , Anaerobiose , Deutério/metabolismo , Dioxigenases/química , Modelos Químicos , Estrutura Molecular , Oxigênio/metabolismo , Isótopos de Oxigênio/metabolismo , Polarografia , Espectrometria de Massas por Ionização por Electrospray
18.
J Biomol Screen ; 16(3): 363-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21343600

RESUMO

The HCV p7 protein is not involved in viral RNA replication but is essential for production of infectious virus. Based on its putative ion channel activity, p7 belongs to a family of viral proteins known as viroporins that oligomerize after insertion into a lipid membrane. To screen for compounds capable of interfering with p7 channel function, a low-throughput liposome-based fluorescent dye permeability assay was modified and converted to a robust high-throughput screening assay. Escherichia coli expressing recombinant p7 were grown in high-density fed-batch fermentation followed by a detergent-free purification using a combination of affinity and reversed-phase chromatography. The phospholipid composition of the liposomes was optimized for both p7 recognition and long-term stability. A counterscreen was developed using the melittin channel-forming peptide to eliminate nonspecific screening hits. The p7 liposome-based assay displayed robust statistics (Z' > 0.75), and sensitivity to inhibition was confirmed using known inhibitors.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala , Canais Iônicos/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Virais/metabolismo , Cromatografia Líquida , Humanos , Canais Iônicos/genética , Canais Iônicos/isolamento & purificação , Lipossomos/química , Lipossomos/metabolismo , Meliteno/metabolismo , Permeabilidade , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Estabilidade Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Sensibilidade e Especificidade , Bibliotecas de Moléculas Pequenas , Proteínas Virais/genética , Proteínas Virais/isolamento & purificação
19.
Virology ; 387(1): 5-10, 2009 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-19304308

RESUMO

A functional screen of an adenovirus-delivered shRNA library that targets approximately 4500 host genes was performed to identify cellular factors that regulate hepatitis C virus (HCV) sub-genomic RNA replication. Seventy-three hits were further examined by siRNA oligonucleotide-directed knockdown, and silencing of the PI4KA gene was demonstrated to have a significant effect on the replication of a HCV genotype 1b replicon. Using transient siRNA oligonucleotide transfections and stable shRNA knockdown clones in HuH-7 cells, the PI4KA gene was shown to be essential for the replication of all HCV genotypes tested (1a, 1b and 2a) but not required for bovine viral diarrhea virus (BVDV) RNA replication.


Assuntos
Hepacivirus/fisiologia , Hepatite C/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , RNA Viral/genética , Replicação Viral/genética , Adenoviridae/genética , Adenoviridae/metabolismo , Adenoviridae/fisiologia , Linhagem Celular Tumoral , Regulação Viral da Expressão Gênica , Técnicas de Silenciamento de Genes , Biblioteca Gênica , Genoma Viral , Hepacivirus/genética , Hepacivirus/crescimento & desenvolvimento , Hepacivirus/metabolismo , Humanos , Antígenos de Histocompatibilidade Menor , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Interferente Pequeno/metabolismo , Reprodutibilidade dos Testes
20.
Biochemistry ; 46(25): 7549-57, 2007 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-17530782

RESUMO

During the biosynthesis of the cyclopropyl amino acid coronamic acid from l-allo-Ile by the phytotoxic Pseudomonas syringae, the aminoacyl group covalently attached to the pantetheinyl arm of CmaA is shuttled to the HS-pantetheinyl arm of the protein CmaD by the aminoacyltransferase CmaE. CmaE will only recognize deacylated CmaA for initial complexation. The aminoacyl group becomes covalently attached to the active site Cys of CmaE and can then be transferred out to the holo pantetheinylated form of CmaD. Both l-Val/l-[14C]Val exchange studies and MALDI-TOF support a reversible shuttling process. Aminoacylated-S-CmaE will transfer the l-Val moiety to the HS-pantetheinyl arm of other T domains, including CytC2, BarA, and ArfA C2-A2-T2 but not to free HS-pantetheine. CmaD could be loaded with other amino acids, for example, l-Leu and l-Thr, by the action of heterologous donor T domains containing alternative aminoacyl groups. Additionally, CmaE is able to accept l-Phe as a substrate when presented on CmaD and is able to load this aminoacyl moiety onto heterologous T domains, expanding the potential for CmaE to be used as a tool for generating chemical diversity within an NRPS assembly line.


Assuntos
Aminoácidos/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Motivos de Aminoácidos , Sequência de Aminoácidos , Aminoacilação , Proteínas de Bactérias/genética , Histidina/química , Isoleucina/metabolismo , Cinética , Modelos Químicos , Dados de Sequência Molecular , Fenilalanina/química , Estrutura Terciária de Proteína , Pseudomonas syringae/enzimologia , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA