Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nucleic Acids Res ; 49(19): 11119-11133, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34643717

RESUMO

Vibrio cholerae, the pathogenic bacterium that causes cholera, has two chromosomes (Chr1, Chr2) that replicate in a well-orchestrated sequence. Chr2 initiation is triggered only after the replication of the crtS site on Chr1. The initiator of Chr2 replication, RctB, displays activities corresponding with its different binding sites: initiator at the iteron sites, repressor at the 39m sites, and trigger at the crtS site. The mechanism by which RctB relays the signal to initiate Chr2 replication from crtS is not well-understood. In this study, we provide new insights into how Chr2 replication initiation is regulated by crtS via RctB. We show that crtS (on Chr1) acts as an anti-inhibitory site by preventing 39m sites (on Chr2) from repressing initiation. The competition between these two sites for RctB binding is explained by the fact that RctB interacts with crtS and 39m via the same DNA-binding surface. We further show that the extreme C-terminal tail of RctB, essential for RctB self-interaction, is crucial for the control exerted by crtS. This subregion of RctB is conserved in all Vibrio, but absent in other Rep-like initiators. Hence, the coordinated replication of both chromosomes likely results from the acquisition of this unique domain by RctB.


Assuntos
Proteínas de Bactérias/genética , Cromossomos Bacterianos/metabolismo , Replicação do DNA , DNA Bacteriano/genética , Vibrio cholerae/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , Cromossomos Bacterianos/química , Clonagem Molecular , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Origem de Replicação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Vibrio cholerae/metabolismo
2.
BMC Biol ; 18(1): 43, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349767

RESUMO

BACKGROUND: In fast-growing bacteria, the genomic location of ribosomal protein (RP) genes is biased towards the replication origin (oriC). This trait allows optimizing their expression during exponential phase since oriC neighboring regions are in higher dose due to multifork replication. Relocation of s10-spc-α locus (S10), which codes for most of the RP, to ectopic genomic positions shows that its relative distance to the oriC correlates to a reduction on its dosage, its expression, and bacterial growth rate. However, a mechanism linking S10 dosage to cell physiology has still not been determined. RESULTS: We hypothesized that S10 dosage perturbations impact protein synthesis capacity. Strikingly, we observed that in Vibrio cholerae, protein production capacity was independent of S10 position. Deep sequencing revealed that S10 relocation altered chromosomal replication dynamics and genome-wide transcription. Such changes increased as a function of oriC-S10 distance. Since RP constitutes a large proportion of cell mass, lower S10 dosage could lead to changes in macromolecular crowding, impacting cell physiology. Accordingly, cytoplasm fluidity was higher in mutants where S10 is most distant from oriC. In hyperosmotic conditions, when crowding differences are minimized, the growth rate and replication dynamics were highly alleviated in these strains. CONCLUSIONS: The genomic location of RP genes ensures its optimal dosage. However, besides of its essential function in translation, their genomic position sustains an optimal macromolecular crowding essential for maximizing growth. Hence, this could be another mechanism coordinating DNA replication to bacterial growth.


Assuntos
Proteínas de Bactérias/metabolismo , Dosagem de Genes , Genes Bacterianos , Origem de Replicação , Proteínas Ribossômicas/metabolismo , Vibrio cholerae/genética , Replicação do DNA , DNA Bacteriano/fisiologia , Vibrio cholerae/crescimento & desenvolvimento
3.
Nucleic Acids Res ; 46(19): 10145-10156, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30184118

RESUMO

Bacteria contain a primary chromosome and, frequently, either essential secondary chromosomes or dispensable megaplasmids of plasmid origin. Incoming plasmids are often poorly adapted to their hosts and their stabilization requires integration with the host's cellular mechanisms in a process termed domestication. All Vibrio, including pathogenic species, carry a domesticated secondary chromosome (Chr2) where replication is coordinated with that of the primary chromosome (Chr1). Chr2 replication is triggered by the replication of an intergenic sequence (crtS) located on Chr1. Yet, the molecular mechanisms by which crtS replication controls the initiation of Chr2 replication are still largely unknown. In this study, we show that crtS not only regulates the timing of Chr2 initiation but also controls Chr2 copy number. We observed and characterized the direct binding of the Chr2 initiator (RctB) on crtS. RctB binding to crtS is independent of its methylation state. RctB molecules, which naturally form dimers, preferentially bind to crtS as monomers, with DnaK/J protein chaperones shown to stimulate binding of additional RctB monomers on crtS. In this study, we addressed various hypothesis of how replication of crtS could trigger Chr2 replication and provide new insights into its mode of action.


Assuntos
Cromossomos Bacterianos/genética , Replicação do DNA , DNA Bacteriano/genética , Genoma Bacteriano/genética , Origem de Replicação , Vibrio cholerae/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Variações do Número de Cópias de DNA , Metilação de DNA , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Plasmídeos/genética , Ligação Proteica
4.
PLoS Genet ; 11(4): e1005156, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25875621

RESUMO

The effects on cell physiology of gene order within the bacterial chromosome are poorly understood. In silico approaches have shown that genes involved in transcription and translation processes, in particular ribosomal protein (RP) genes, localize near the replication origin (oriC) in fast-growing bacteria suggesting that such a positional bias is an evolutionarily conserved growth-optimization strategy. Such genomic localization could either provide a higher dosage of these genes during fast growth or facilitate the assembly of ribosomes and transcription foci by keeping physically close the many components of these macromolecular machines. To explore this, we used novel recombineering tools to create a set of Vibrio cholerae strains in which S10-spec-α (S10), a locus bearing half of the ribosomal protein genes, was systematically relocated to alternative genomic positions. We show that the relative distance of S10 to the origin of replication tightly correlated with a reduction of S10 dosage, mRNA abundance and growth rate within these otherwise isogenic strains. Furthermore, this was accompanied by a significant reduction in the host-invasion capacity in Drosophila melanogaster. Both phenotypes were rescued in strains bearing two S10 copies highly distal to oriC, demonstrating that replication-dependent gene dosage reduction is the main mechanism behind these alterations. Hence, S10 positioning connects genome structure to cell physiology in Vibrio cholerae. Our results show experimentally for the first time that genomic positioning of genes involved in the flux of genetic information conditions global growth control and hence bacterial physiology and potentially its evolution.


Assuntos
Proteínas de Bactérias/genética , Ordem dos Genes , Genoma Bacteriano , Proteínas Ribossômicas/genética , Vibrio cholerae/patogenicidade , Animais , Drosophila melanogaster/microbiologia , Dosagem de Genes , Loci Gênicos , Vibrio cholerae/genética , Virulência/genética
5.
BMC Biotechnol ; 17(1): 62, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28705159

RESUMO

BACKGROUND: Direct manipulation of the genome is a widespread technique for genetic studies and synthetic biology applications. The tyrosine and serine site-specific recombination systems of bacteriophages HK022 and ΦC31 are widely used for stable directional exchange and relocation of DNA sequences, making them valuable tools in these contexts. We have developed site-specific recombination tools that allow the direct selection of recombination events by embedding the attB site from each system within the ß-lactamase resistance coding sequence (bla). RESULTS: The HK and ΦC31 tools were developed by placing the attB sites from each system into the signal peptide cleavage site coding sequence of bla. All possible open reading frames (ORFs) were inserted and tested for recombination efficiency and bla activity. Efficient recombination was observed for all tested ORFs (3 for HK, 6 for ΦC31) as shown through a cointegrate formation assay. The bla gene with the embedded attB site was functional for eight of the nine constructs tested. CONCLUSIONS: The HK/ΦC31 att-bla system offers a simple way to directly select recombination events, thus enhancing the use of site-specific recombination systems for carrying out precise, large-scale DNA manipulation, and adding useful tools to the genetics toolbox. We further show the power and flexibility of bla to be used as a reporter for recombination.


Assuntos
Sítios de Ligação Microbiológicos/genética , Engenharia Genética/métodos , Recombinação Genética , Bacteriófagos/genética , Clonagem Molecular , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Genes Reporter , Testes de Sensibilidade Microbiana , Fases de Leitura Aberta , Plasmídeos , beta-Lactamases/genética
6.
Mol Microbiol ; 91(4): 665-78, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24308271

RESUMO

Dam methylates GATC sequences in γ-proteobacteria genomes, regulating several cellular functions including replication. In Vibrio cholerae, which has two chromosomes, Dam is essential for viability, owing to its role in chr2 replication initiation. In this study, we isolated spontaneous mutants of V. cholerae that were able to survive the deletion of dam. In these mutants, homologous recombination and chromosome dimer resolution are essential, unless DNA mismatch repair is inactivated. Furthermore, the initiator of chr2 replication, RctB, is no longer required. We show that, instead, replication of chr2 is insured by spontaneous fusion with chr1 and piggybacking its replication machinery. We report that natural fusion of chr1 and chr2 occurred by two distinct recombination pathways: homologous recombination between repeated IS elements and site-specific recombination between dif sites. Lastly, we observed a preferential fusion of the two chromosomes in their terminus of replication.


Assuntos
Regulação Bacteriana da Expressão Gênica , Viabilidade Microbiana , Recombinação Genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/deficiência , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Vibrio cholerae/genética , Cromossomos Bacterianos , Replicação do DNA , Deleção de Genes
7.
PLoS Genet ; 8(1): e1002472, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22253612

RESUMO

Although bacteria with multipartite genomes are prevalent, our knowledge of the mechanisms maintaining their genome is very limited, and much remains to be learned about the structural and functional interrelationships of multiple chromosomes. Owing to its bi-chromosomal genome architecture and its importance in public health, Vibrio cholerae, the causative agent of cholera, has become a preferred model to study bacteria with multipartite genomes. However, most in vivo studies in V. cholerae have been hampered by its genome architecture, as it is difficult to give phenotypes to a specific chromosome. This difficulty was surmounted using a unique and powerful strategy based on massive rearrangement of prokaryotic genomes. We developed a site-specific recombination-based engineering tool, which allows targeted, oriented, and reciprocal DNA exchanges. Using this genetic tool, we obtained a panel of V. cholerae mutants with various genome configurations: one with a single chromosome, one with two chromosomes of equal size, and one with both chromosomes controlled by identical origins. We used these synthetic strains to address several biological questions--the specific case of the essentiality of Dam methylation in V. cholerae and the general question concerning bacteria carrying circular chromosomes--by looking at the effect of chromosome size on topological issues. In this article, we show that Dam, RctB, and ParA2/ParB2 are strictly essential for chrII origin maintenance, and we formally demonstrate that the formation of chromosome dimers increases exponentially with chromosome size.


Assuntos
Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Genoma Bacteriano/genética , Origem de Replicação/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , Vibrio cholerae/genética , Proteínas de Bactérias/metabolismo , Cólera/microbiologia , Replicação do DNA/genética , DNA Cruciforme/genética , Regulação Bacteriana da Expressão Gênica , Recombinação Homóloga/genética , Humanos , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo
8.
Proc Natl Acad Sci U S A ; 107(9): 4377-82, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20133778

RESUMO

Cholera toxin is encoded in the genome of CTXvarphi, a lysogenic filamentous phage of Vibrio cholerae. CTXvarphi variants contribute to the genetic diversity of cholera epidemic strains. It has been shown that the El Tor variant of CTXvarphi hijacks XerC and XerD, two host-encoded tyrosine recombinases that normally function to resolve chromosome dimers, to integrate at dif1, the dimer resolution site of the larger of the two V. cholerae chromosomes. However, the exact mechanism of integration of CTXvarphi and the rules governing its integration remained puzzling, with phage variants integrated at either or both dimer resolution sites of the two V. cholerae chromosomes. We designed a genetic system to determine experimentally the tropism of integration of CTXvarphi and thus define rules of compatibility between phage variants and dimer resolution sites. We then showed in vitro how these rules are explained by the direct integration of the single-stranded phage genome into the double-stranded bacterial genome. Finally, we showed how the evolution of phage attachment and chromosome dimer resolution sites contributes to the generation of genetic diversity among cholera epidemic strains.


Assuntos
Bacteriófagos/fisiologia , Toxina da Cólera/genética , Vibrio cholerae/virologia , Tropismo Viral , Integração Viral , Sequência de Bases , Cromossomos Bacterianos , Recombinação Genética
9.
EcoSal Plus ; 11(1): eesp00082022, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38277776

RESUMO

To preserve the integrity of their genome, bacteria rely on several genome maintenance mechanisms that are co-ordinated with the cell cycle. All members of the Vibrio family have a bipartite genome consisting of a primary chromosome (Chr1) homologous to the single chromosome of other bacteria such as Escherichia coli and a secondary chromosome (Chr2) acquired by a common ancestor as a plasmid. In this review, we present our current understanding of genome maintenance in Vibrio cholerae, which is the best-studied model for bacteria with multi-partite genomes. After a brief overview on the diversity of Vibrio genomic architecture, we describe the specific, common, and co-ordinated mechanisms that control the replication and segregation of the two chromosomes of V. cholerae. Particular attention is given to the unique checkpoint mechanism that synchronizes Chr1 and Chr2 replication.


Assuntos
Replicação do DNA , Vibrio cholerae , Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Ciclo Celular/genética , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Bactérias/genética
10.
mBio ; 14(2): e0343222, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36861972

RESUMO

It is unclear how gene order within the chromosome influences genome evolution. Bacteria cluster transcription and translation genes close to the replication origin (oriC). In Vibrio cholerae, relocation of s10-spc-α locus (S10), the major locus of ribosomal protein genes, to ectopic genomic positions shows that its relative distance to the oriC correlates to a reduction in growth rate, fitness, and infectivity. To test the long-term impact of this trait, we evolved 12 populations of V. cholerae strains bearing S10 at an oriC-proximal or an oriC-distal location for 1,000 generations. During the first 250 generations, positive selection was the main force driving mutation. After 1,000 generations, we observed more nonadaptative mutations and hypermutator genotypes. Populations fixed inactivating mutations at many genes linked to virulence: flagellum, chemotaxis, biofilm, and quorum sensing. Throughout the experiment, all populations increased their growth rates. However, those bearing S10 close to oriC remained the fittest, indicating that suppressor mutations cannot compensate for the genomic position of the main ribosomal protein locus. Selection and sequencing of the fastest-growing clones allowed us to characterize mutations inactivating, among other sites, flagellum master regulators. Reintroduction of these mutations into the wild-type context led to a ≈10% growth improvement. In conclusion, the genomic location of ribosomal protein genes conditions the evolutionary trajectory of V. cholerae. While genomic content is highly plastic in prokaryotes, gene order is an underestimated factor that conditions cellular physiology and evolution. A lack of suppression enables artificial gene relocation as a tool for genetic circuit reprogramming. IMPORTANCE The bacterial chromosome harbors several entangled processes such as replication, transcription, DNA repair, and segregation. Replication begins bidirectionally at the replication origin (oriC) until the terminal region (ter) organizing the genome along the ori-ter axis gene order along this axis could link genome structure to cell physiology. Fast-growing bacteria cluster translation genes near oriC. In Vibrio cholerae, moving them away was feasible but at the cost of losing fitness and infectivity. Here, we evolved strains harboring ribosomal genes close or far from oriC. Growth rate differences persisted after 1,000 generations. No mutation was able to compensate for the growth defect, showing that ribosomal gene location conditions their evolutionary trajectory. Despite the high plasticity of bacterial genomes, evolution has sculpted gene order to optimize the ecological strategy of the microorganism. We observed growth rate improvement throughout the evolution experiment that occurred at expense of energetically costly processes such the flagellum biosynthesis and virulence-related functions. From the biotechnological point of view, manipulation of gene order enables altering bacterial growth with no escape events.


Assuntos
Vibrio cholerae , Vibrio cholerae/genética , Proteínas Ribossômicas/genética , Genoma Bacteriano , Mutação , Cromossomos , Proteínas de Bactérias/genética
11.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37502966

RESUMO

The possible active entry of aminoglycosides in bacterial cells has been debated since the development of this antibiotic family. Here we report the identification of their active transport mechanism in Vibrio species. We combined genome-wide transcriptional analysis and fitness screens to identify alterations driven by treatment of V. cholerae with sub-minimum inhibitory concentrations (sub-MIC) of the aminoglycoside tobramycin. RNA-seq data showed downregulation of the small non-coding RNA ncRNA586 during such treatment, while Tn-seq revealed that inactivation of this sRNA was associated with improved fitness in the presence of tobramycin. This sRNA is located near sugar transport genes and previous work on a homologous region in Vibrio tasmaniensis suggested that this sRNA stabilizes gene transcripts for carbohydrate transport and utilization, as well as phage receptors. The role for ncRNA586, hereafter named ctrR, in the transport of both carbohydrates and aminoglycosides, was further investigated. Flow cytometry on cells treated with a fluorescent aminoglycoside confirmed the role of ctrR and of carbohydrate transporters in differential aminoglycoside entry. Despite sequence diversity, ctrR showed functional conservation across the Vibrionales. This system in directly modulated by carbon sources, suggesting regulation by carbon catabolite repression, a widely conserved mechanism in Gram-negative bacteria, priming future research on aminoglycoside uptake by sugar transporters in other bacterial species.

12.
Genome Res ; 19(10): 1696-709, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19525356

RESUMO

Our knowledge of yeast genomes remains largely dominated by the extensive studies on Saccharomyces cerevisiae and the consequences of its ancestral duplication, leaving the evolution of the entire class of hemiascomycetes only partly explored. We concentrate here on five species of Saccharomycetaceae, a large subdivision of hemiascomycetes, that we call "protoploid" because they diverged from the S. cerevisiae lineage prior to its genome duplication. We determined the complete genome sequences of three of these species: Kluyveromyces (Lachancea) thermotolerans and Saccharomyces (Lachancea) kluyveri (two members of the newly described Lachancea clade), and Zygosaccharomyces rouxii. We included in our comparisons the previously available sequences of Kluyveromyces lactis and Ashbya (Eremothecium) gossypii. Despite their broad evolutionary range and significant individual variations in each lineage, the five protoploid Saccharomycetaceae share a core repertoire of approximately 3300 protein families and a high degree of conserved synteny. Synteny blocks were used to define gene orthology and to infer ancestors. Far from representing minimal genomes without redundancy, the five protoploid yeasts contain numerous copies of paralogous genes, either dispersed or in tandem arrays, that, altogether, constitute a third of each genome. Ancient, conserved paralogs as well as novel, lineage-specific paralogs were identified.


Assuntos
Genoma Fúngico , Genômica/métodos , Saccharomycetales/genética , Elementos de DNA Transponíveis/genética , Elementos de DNA Transponíveis/fisiologia , Eremothecium/genética , Duplicação Gênica , Genes Fúngicos/genética , Inteínas/genética , Kluyveromyces/genética , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Filogenia , RNA não Traduzido/genética , Saccharomyces/genética , Spliceossomos/metabolismo , Zygosaccharomyces/genética
13.
PLoS Genet ; 4(9): e1000201, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18818731

RESUMO

Unlike most bacteria, Vibrio cholerae harbors two distinct, nonhomologous circular chromosomes (chromosome I and II). Many features of chromosome II are plasmid-like, which raised questions concerning its chromosomal nature. Plasmid replication and segregation are generally not coordinated with the bacterial cell cycle, further calling into question the mechanisms ensuring the synchronous management of chromosome I and II. Maintenance of circular replicons requires the resolution of dimers created by homologous recombination events. In Escherichia coli, chromosome dimers are resolved by the addition of a crossover at a specific site, dif, by two tyrosine recombinases, XerC and XerD. The process is coordinated with cell division through the activity of a DNA translocase, FtsK. Many E. coli plasmids also use XerCD for dimer resolution. However, the process is FtsK-independent. The two chromosomes of the V. cholerae N16961 strain carry divergent dimer resolution sites, dif1 and dif2. Here, we show that V. cholerae FtsK controls the addition of a crossover at dif1 and dif2 by a common pair of Xer recombinases. In addition, we show that specific DNA motifs dictate its orientation of translocation, the distribution of these motifs on chromosome I and chromosome II supporting the idea that FtsK translocation serves to bring together the resolution sites carried by a dimer at the time of cell division. Taken together, these results suggest that the same FtsK-dependent mechanism coordinates dimer resolution with cell division for each of the two V. cholerae chromosomes. Chromosome II dimer resolution thus stands as a bona fide chromosomal process.


Assuntos
Proteínas de Bactérias/metabolismo , Cólera/microbiologia , Cromossomos Bacterianos/genética , Recombinação Genética , Vibrio cholerae/genética , Proteínas de Bactérias/genética , Sequência de Bases , DNA Bacteriano/genética , Humanos , Dados de Sequência Molecular , Recombinases/genética , Recombinases/metabolismo , Especificidade da Espécie , Vibrio cholerae/enzimologia , Vibrio cholerae/isolamento & purificação
14.
Sci Rep ; 9(1): 8315, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31165739

RESUMO

Bacterial chromosomes harbour a unique origin of bidirectional replication, oriC. They are almost always circular, with replication terminating in a region diametrically opposite to oriC, the terminus. The oriC-terminus organisation is reflected by the orientation of the genes and by the disposition of DNA-binding protein motifs implicated in the coordination of chromosome replication and segregation with cell division. Correspondingly, the E. coli and B. subtilis model bacteria possess a replication fork trap system, Tus/ter and RTP/ter, respectively, which enforces replication termination in the terminus region. Here, we show that tus and rtp are restricted to four clades of bacteria, suggesting that tus was recently domesticated from a plasmid gene. We further demonstrate that there is no replication fork system in Vibrio cholerae, a bacterium closely related to E. coli. Marker frequency analysis showed that replication forks originating from ectopic origins were not blocked in the terminus region of either of the two V. cholerae chromosomes, but progressed normally until they encountered an opposite fork. As expected, termination synchrony of the two chromosomes is disrupted by these ectopic origins. Finally, we show that premature completion of the primary chromosome replication did not modify the choreography of segregation of its terminus region.


Assuntos
Bacillus subtilis/genética , Replicação do DNA , DNA Bacteriano/genética , Escherichia coli/genética , Complexo de Reconhecimento de Origem/genética , Vibrio cholerae/genética , Cromossomos Bacterianos/genética , Genes Bacterianos , Marcadores Genéticos , Microscopia de Fluorescência , Filogenia , Plasmídeos/genética , Domínios Proteicos , Especificidade da Espécie
15.
Front Microbiol ; 9: 1833, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131796

RESUMO

Faithful vertical transmission of genetic information, especially of essential core genes, is a prerequisite for bacterial survival. Hence, replication of all the replicons is tightly controlled to ensure that all daughter cells get the same genome copy as their mother cell. Essential core genes are very often carried by the main chromosome. However they can occasionally be found on secondary chromosomes, recently renamed chromids. Chromids have evolved from non-essential megaplasmids, and further acquired essential core genes and a genomic signature closed to that of the main chromosome. All chromids carry a plasmidic replication origin, belonging so far to either the iterons or repABC type. Based on these differences, two categories of chromids have been distinguished. In this review, we focus on the replication initiation controls of these two types of chromids. We show that the sophisticated mechanisms controlling their replication evolved from their plasmid counterparts to allow a timely controlled replication, occurring once per cell cycle.

16.
Sci Adv ; 2(4): e1501914, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27152358

RESUMO

Bacteria with multiple chromosomes represent up to 10% of all bacterial species. Unlike eukaryotes, these bacteria use chromosome-specific initiators for their replication. In all cases investigated, the machineries for secondary chromosome replication initiation are of plasmid origin. One of the important differences between plasmids and chromosomes is that the latter replicate during a defined period of the cell cycle, ensuring a single round of replication per cell. Vibrio cholerae carries two circular chromosomes, Chr1 and Chr2, which are replicated in a well-orchestrated manner with the cell cycle and coordinated in such a way that replication termination occurs at the same time. However, the mechanism coordinating this synchrony remains speculative. We investigated this mechanism and revealed that initiation of Chr2 replication is triggered by the replication of a 150-bp locus positioned on Chr1, called crtS. This crtS replication-mediated Chr2 replication initiation mechanism explains how the two chromosomes communicate to coordinate their replication. Our study reveals a new checkpoint control mechanism in bacteria, and highlights possible functional interactions mediated by contacts between two chromosomes, an unprecedented observation in bacteria.


Assuntos
Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Replicação do DNA/genética , Vibrio cholerae/genética , Pontos de Checagem do Ciclo Celular/genética , Segregação de Cromossomos , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Plasmídeos/genética , Origem de Replicação/genética
17.
Curr Opin Microbiol ; 22: 120-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25460805

RESUMO

A minority of bacterial species has been found to carry a genome divided among several chromosomes. Among these, all Vibrio species harbor a genome split into two chromosomes of uneven size, with distinctive replication origins whose replication firing involves common and specific factors. Most of our current knowledge on replication and segregation in multi-chromosome bacteria has come from the study of Vibrio cholerae, which is now the model organism for this field. It has been firmly established that replication of the two V. cholerae chromosomes is temporally regulated and coupled to the cell cycle, but the mediators of these processes are as yet mostly unknown. The two chromosomes are also organized along different patterns within the cell and occupy different subcellular domains. The selective advantages provided by this partitioning into two replicons are still unclear and are a key motivation for these studies.


Assuntos
Genoma Bacteriano , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Ciclo Celular/fisiologia , Segregação de Cromossomos , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Replicação do DNA , Origem de Replicação
18.
Mol Cell ; 19(4): 559-66, 2005 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-16109379

RESUMO

A major determinant of Vibrio cholerae pathogenicity, the cholera enterotoxin, is encoded in the genome of an integrated phage, CTXvarphi. CTXvarphi integration depends on two host-encoded tyrosine recombinases, XerC and XerD. It occurs at dif1, a 28 bp site on V. cholerae chromosome 1 normally used by XerCD for chromosome dimer resolution. The replicative form of the phage contains two pairs of binding sites for XerC and XerD in inverted orientations. Here we show that in the single-stranded genome of the phage, these sites fold into a hairpin structure, which creates a recombination target for XerCD. In the presence of XerD, XerC can catalyze a single pair of strand exchanges between this target and dif1, resulting in integration of the phage. This integration strategy explains why the rules that normally apply to tyrosine recombinase reactions seemed not to apply to CTXvarphi integration and, in particular, why integration is irreversible.


Assuntos
DNA de Cadeia Simples/genética , Genoma Bacteriano , Genoma Viral , Fagos de Pseudomonas/genética , Vibrio cholerae/genética , Integração Viral/genética , Sequência de Bases , Modelos Biológicos , Dados de Sequência Molecular , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA