Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(8)2022 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35457242

RESUMO

Two isoforms of the glutamate decarboxylase (GAD) enzyme exist, GAD65 and GAD67, which are associated with type 1 diabetes (T1D) and stiff-person syndrome (SPS), respectively. Interestingly, it has been reported that T1D patients seldom develop SPS, whereas patients with SPS occasionally develop T1D. In addition, coxsackievirus B4 (CVB4) has previously been proposed to be involved in the onset of T1D through molecular mimicry. On this basis, we aimed to examine antibody cross-reactivity between a specific region of GAD65 and GAD67, which has high sequence homology to the nonstructural P2C protein of CVB4 to determine potential correlations at antibody level. Monoclonal peptide antibodies generated in mice specific for a region with high similarity in all three proteins were screened for reactivity along with human sera in immunoassays. In total, six antibodies were generated. Two of the antibodies reacted to both GAD isoforms. However, none of the antibodies were cross-reactive to CVB, suggesting that antibody cross-reactivity between GAD65 and CVB, and GAD67 and CVB may not contribute to the onset of T1D and SPS, respectively.


Assuntos
Diabetes Mellitus Tipo 1 , Rigidez Muscular Espasmódica , Animais , Anticorpos Monoclonais , Autoanticorpos , Glutamato Descarboxilase/metabolismo , Humanos , Camundongos , Peptídeos , Isoformas de Proteínas
2.
Int J Mol Sci ; 20(12)2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31207885

RESUMO

Characterization of multiple antibody epitopes has revealed the necessity of specific groups of amino acid residues for reactivity. This applies to the majority of antibody-antigen interactions, where especially charged and hydrophilic amino acids have been reported to be essential for antibody reactivity. This study describes thorough characterization of glutamic acid decarboxylase (GAD) 65 antigenic epitopes, an immunodominant autoantigen in type 1 diabetes (T1D). As linear epitopes are sparsely described for GAD65 in T1D, we aimed to identify and thoroughly characterize two GAD65 antibodies using immunoassays. A monoclonal antibody recognized an epitope in the N-terminal domain of GAD65, 8FWSFGSE14, whereas a polyclonal antibody recognized two continuous epitopes in the C-terminal domain, corresponding to amino acids 514RTLED518 and 549PLGDKVNF556. Hydrophobic amino acids were essential for antibody reactivity, which was verified by competitive inhibition assays. Moreover, the epitopes were located in flexible linker regions and turn structures. These findings confirm the versatile nature of antibody-antigen interactions and describe potential continuous epitopes related to T1D, which predominantly have been proposed to be of discontinuous nature.


Assuntos
Epitopos/química , Glutamato Descarboxilase/química , Motivos de Aminoácidos , Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Glutamato Descarboxilase/imunologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA