Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 100: 219-229, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32160965

RESUMO

The use of terrestrial raw materials to replace fish meal (FM) and fish oil (FO) in marine fish diets may affect fish growth performance and health. In the last years functional additives have been profiled as good candidates to reduce the effects on health and disease resistance derived from this replacement, via reinforcement of the fish immune system. In the present study, three isoenergetic and isonitrogenous diets with low FM and FO (10% and 6% respectively) were tested based on supplementation either with 0.5% galactomannanoligosaccharides (GMOS diet) or 0.02% of a mixture of essential oils (PHYTO diet), a non-supplemented diet was defined as a control diet. Fish were fed the experimental diets in triplicate for 9 weeks and then they were subjected to a stress by confinement as a single challenge (C treatment) or combined with an experimental intestinal infection with Vibrio anguillarum (CI treatment). Along the challenge test, selected stress and immunological parameters were evaluated at 2, 24 and 168h after C or CI challenges. As stress indicators, circulating plasma cortisol and glucose concentrations were analyzed as well as the relative gene expression of cyp11b hydroxylase, hypoxia inducible factor, steroidogenic acute regulatory protein, heat shock protein 70 and heat shock protein 90 (cyp11b, hif-1α, StAR, hsp70 and hsp90). As immune markers, serum and skin mucus lysozyme, bactericidal and peroxidase activities were measured, as well as gene expression of Caspase-3 (casp-3) and interleukin 1ß (il-1ß). The use of functional additives induced a significant (p < 0.05) reduction of circulating plasma cortisol concentration when confinement was the unique challenge test applied. Supplementation of PHYTO induced a down-regulation of cyp11b, hif-1α, casp-3 and il-1ß gene expression 2h after stress test, whereas StAR expression was significantly (p < 0.05) up-regulated. However, when combination of confinement stress and infection was applied (CI treatment), the use of PHYTO significantly (p < 0.05) down-regulated StAR and casp-3 gene expression 2h after challenge test, denoting that PHYTO diet reinforced fish capacity of stress response via protection of head kidney leucocytes from stress-related apoptotic processes, with lower caspase-3 gene expression and a higher il-1ß gene expression when an infection occurs. Additionally, dietary supplementation with GMOS and PHYTO compounds increased fish serum lysozyme after infection. Both functional additives entailed a better capability of the animals to cope with infection in European sea bass when fed low FM and FO diets.


Assuntos
Ração Animal/análise , Bass/imunologia , Suplementos Nutricionais/análise , Óleos de Peixe/administração & dosagem , Prebióticos/administração & dosagem , Estresse Fisiológico , Animais , Aquicultura , Bass/genética , Caspase 3/genética , Caspase 3/imunologia , Resistência à Doença , Hidrocortisona/sangue , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Óleos Voláteis/administração & dosagem , Oligossacarídeos/administração & dosagem
2.
PLoS One ; 15(4): e0231494, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32298317

RESUMO

There is an increasing interest from the aquafeed industry in functional feeds containing selected additives that improve fish growth performance and health status. Functional feed additives include probiotics, prebiotics, organic acids, and phytogenics (substances derived from plants and their extracts). This study evaluated the effects of dietary inclusion of a mucilage extract rich in galactomannan oligosaccharides (GMOS), a mixture of garlic and labiatae-plants oils (PHYTO), and a combination of them (GMOSPHYTO), on gut microbiota composition of European sea bass (Dicentrarchus labrax) fed with a low fishmeal (FM) and fish oil (FO) diet. Three experimental diets and a control diet (plant-based formulation with 10% FM and 6% FO) were tested in a 63-days feeding trial. To analyze the microbiota associated to feeds and the intestinal autochthonous (mucosa-adhered) and allochthonous (transient) microbial communities, the Illumina MiSeq platform for sequencing of 16S rRNA gene and QIIME2 pipeline were used. Metabarcoding analysis of feed-associated bacteria showed that the microbial communities of control (CTRL) feed deeply differed from those of experimental diets. The number of reads was significantly lower in CTRL feed than in other feeds. The OTU (operational taxonomic unit) number was instead similar between the feeds, ranging from 42 to 50 OTUs. The variation of resident gut microbiota induced by diet was lower than the variation of transient intestinal microbiota, because feedstuffs are a major source of allochthonous bacteria, which can temporarily integrate into the gut transient microbiome. However, the composition of transient bacterial communities was not simply a mirror of feed-borne bacteria. Indeed, the microbial profile of feeds was different from both faecal and mucosa profiles. Our findings suggest that the dietary inclusion of GMOS (0.5%) and PHYTO (0.02%) in a low FM and FO diet induces changes in gut microbiota composition of European sea bass. However, if on allochthonous microbiota the combined inclusion of GMOS and PHYTO showed an antagonistic effect on bactericidal activity against Vibrionales, at mucosa level, only GMOSPHYTO diet increased the relative abundance of Bacteroidales, Lactobacillales, and Clostridiales resident bacterial orders. The main beneficial effects of GMOS and PHYTO on gut microbiota are the reduction of coliforms and Vibrionales bacteria, which include several potentially pathogenic species for fish, and the enrichment of gut microbiota composition with butyrate producer taxa. Therefore, these functional ingredients have a great potential to be used as health-promoting agents in the farming of European sea bass and other marine fish.


Assuntos
Bass/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Óleos de Peixe/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mananas/farmacologia , Extratos Vegetais/farmacologia , Compostos Alílicos/farmacologia , Ração Animal , Animais , Aquicultura/métodos , Bass/crescimento & desenvolvimento , Bass/microbiologia , Galactose/análogos & derivados , Microbioma Gastrointestinal/genética , Óleos de Plantas/farmacologia , RNA Ribossômico 16S/genética , Sulfetos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA