Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
J Neurosci Res ; 101(7): 1098-1106, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36866610

RESUMO

The present study aimed to examine a weakly electric fish Gnathonemus petersii (G. petersii) as a candidate model organism of glutamatergic theory of schizophrenia. The idea of G. petersii elevating the modeling of schizophrenia symptoms is based on the fish's electrolocation and electrocommunication abilities. Fish were exposed to the NMDA antagonist ketamine in two distinct series differing in the dose of ketamine. The main finding revealed ketamine-induced disruption of the relationship between electric signaling and behavior indicating impairment of fish navigation. Moreover, lower doses of ketamine significantly increased locomotion and erratic movement and higher doses of ketamine reduced the number of electric organ discharges indicating successful induction of positive schizophrenia-like symptoms and disruption of fish navigation. Additionally, a low dose of haloperidol was used to test the normalization of the positive symptoms to suggest a predictive validity of the model. However, although successfully induced, positive symptoms were not normalized using the low dose of haloperidol; hence, more doses of the typical antipsychotic haloperidol and probably also of a representative of atypical antipsychotic drugs need to be examined to confirm the predictive validity of the model.


Assuntos
Peixe Elétrico , Ketamina , Esquizofrenia , Animais , Ketamina/farmacologia , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Haloperidol/farmacologia , Locomoção
2.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003464

RESUMO

Multiple sclerosis (MS) is a demyelinating and neurodegenerative autoimmune disease of the central nervous system (CNS) damaging myelin and axons. Diagnosis is based on the combination of clinical findings, magnetic resonance imaging (MRI) and analysis of cerebrospinal fluid (CSF). Metabolomics is a systematic study that allows us to track amounts of different metabolites in a chosen medium. The aim of this study was to establish metabolomic differences between the cerebrospinal fluid of patients in the early stages of multiple sclerosis and healthy controls, which could potentially serve as markers for predicting disease activity. We collected CSF from 40 patients after the first attack of clinical symptoms who fulfilled revised McDonald criteria of MS, and the CSF of 33 controls. Analyses of CSF samples were performed by using the high-performance liquid chromatography system coupled with a mass spectrometer with a high-resolution detector. Significant changes in concentrations of arginine, histidine, spermidine, glutamate, choline, tyrosine, serine, oleic acid, stearic acid and linoleic acid were observed. More prominently, Expanded Disability Status Scale values significantly correlated with lower concentrations of histidine. We conclude that these metabolites could potentially play a role as a biomarker of disease activity and predict presumable inflammatory changes.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/líquido cefalorraquidiano , Ácidos Graxos , Histidina , Sistema Nervoso Central , Metabolômica , Biomarcadores/líquido cefalorraquidiano
3.
Cent Eur J Public Health ; 30(3): 144-153, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36239361

RESUMO

OBJECTIVES: Different psychoactive substances are widely used in today's society. So far limited data are available on the use of psychedelics in the general population. The main aim of this study is to estimate the numbers of users of substances with psychedelic properties (classical psychedelics, cannabis, ecstasy, and ketamine) in the Czech Republic. METHODS: Data from two samples enrolled in representative cross-sectional questionnaire surveys in the Czech adult population in 2016 (n = 2,785) and 2018 (n = 1,665) were analysed. Prevalence rates were extrapolated to estimate numbers of current, i.e., last-year, users of psychedelics, and their socio-demographic profiles were compared with non-users and users of cannabis. RESULTS: An estimated 5-6% of the Czech adult population (350-430 thousand people) used classical psychedelics (LSD, psilocybin mushrooms, ayahuasca) in their lifetime, increasing up to 28-30% when cannabis is included (1.9-2.1 million users). Current use of classical psychedelics reached 0.7-1.9% (50-130 thousand people), and 9-11% (590-750 thousand users) when cannabis was included. Users of psychedelics were more often males, of younger age and single. CONCLUSIONS: No significant socio-demographic differences were found between users of classical psychedelics and recreational cannabis users, however, differences were significant when compared to non-users and users of other illicit drugs. Findings should further serve to inform drug policy and social and healthcare systems in respect to the use of psychedelics.


Assuntos
Cannabis , Alucinógenos , Drogas Ilícitas , Ketamina , Transtornos Relacionados ao Uso de Substâncias , Adulto , Estudos Transversais , República Tcheca/epidemiologia , Alucinógenos/uso terapêutico , Humanos , Dietilamida do Ácido Lisérgico , Masculino , Psilocibina , Transtornos Relacionados ao Uso de Substâncias/epidemiologia
4.
Bioorg Chem ; 107: 104596, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33421953

RESUMO

A series of tacrine - benzothiazole hybrids incorporate inhibitors of acetylcholinesterase (AChE), amyloid ß (Aß) aggregation and mitochondrial enzyme ABAD, whose interaction with Aß leads to mitochondrial dysfunction, into a single molecule. In vitro, several of 25 final compounds exerted excellent anti-AChE properties and interesting capabilities to block Aß aggregation. The best derivative of the series could be considered 10w that was found to be highly potent and selective towards AChE with the IC50 value in nanomolar range. Moreover, the same drug candidate exerted absolutely the best results of the series against ABAD, decreasing its activity by 23% at 100 µM concentration. Regarding the cytotoxicity profile of highlighted compound, it roughly matched that of its parent compound - 6-chlorotacrine. Finally, 10w was forwarded for in vivo scopolamine-induced amnesia experiment consisting of Morris Water Maze test, where it demonstrated mild procognitive effect. Taking into account all in vitro and in vivo data, highlighted derivative 10w could be considered as the lead structure worthy of further investigation.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Benzotiazóis/farmacologia , Colinérgicos/farmacologia , Inibidores Enzimáticos/farmacologia , Fármacos Neuroprotetores/farmacologia , Tacrina/farmacologia , 3-Hidroxiacil-CoA Desidrogenases/antagonistas & inibidores , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Benzotiazóis/química , Colinérgicos/síntese química , Colinérgicos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Agregados Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade , Tacrina/química
5.
Neurochem Res ; 45(4): 915-927, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31997103

RESUMO

The nucleus-encoded 17ß-hydroxysteroid dehydrogenase type 10 (17ß-HSD10) regulates cyclophilin D (cypD) in the mitochondrial matrix. CypD regulates opening of mitochondrial permeability transition pores. Both mechanisms may be affected by amyloid ß peptides accumulated in mitochondria in Alzheimer's disease (AD). In order to clarify changes occurring in brain mitochondria, we evaluated interactions of both mitochondrial proteins in vitro (by surface plasmon resonance biosensor) and detected levels of various complexes of 17ß-HSD10 formed in vivo (by sandwich ELISA) in brain mitochondria isolated from the transgenic animal model of AD (homozygous McGill-R-Thy1-APP rats) and in cerebrospinal fluid samples of AD patients. By surface plasmon resonance biosensor, we observed the interaction of 17ß-HSD10 and cypD in a direct real-time manner and determined, for the first time, the kinetic parameters of the interaction (ka 2.0 × 105 M1s-1, kd 5.8 × 104 s-1, and KD 3.5 × 10-10 M). In McGill-R-Thy1-APP rats compared to controls, levels of 17ß-HSD10-cypD complexes were decreased and those of total amyloid ß increased. Moreover, the levels of 17ß-HSD10-cypD complexes were decreased in cerebrospinal fluid of individuals with AD (in mild cognitive impairment as well as dementia stages) or with Frontotemporal lobar degeneration (FTLD) compared to cognitively normal controls (the sensitivity of the complexes to AD dementia was 92.9%, that to FTLD 73.8%, the specificity to AD dementia equaled 91.7% in a comparison with the controls but only 26.2% with FTLD). Our results demonstrate the weakened ability of 17ß-HSD10 to regulate cypD in the mitochondrial matrix probably via direct effects of amyloid ß. Levels of 17ß-HSD10-cypD complexes in cerebrospinal fluid seem to be the very sensitive indicator of mitochondrial dysfunction observed in neurodegeneration but unfortunately not specific to AD pathology. We do not recommend it as the new biomarker of AD.


Assuntos
17-Hidroxiesteroide Desidrogenases/metabolismo , Doença de Alzheimer/metabolismo , Peptidil-Prolil Isomerase F/metabolismo , 17-Hidroxiesteroide Desidrogenases/líquido cefalorraquidiano , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Humanos , Cinética , Masculino , Mitocôndrias/metabolismo , Ratos Transgênicos , Ratos Wistar , Ressonância de Plasmônio de Superfície
6.
Med Res Rev ; 39(3): 961-975, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30426515

RESUMO

Narcolepsy is a rare, chronic neurological disease characterized by excessive daytime sleepiness, cataplexy, vivid hallucinations, and sleep paralysis. Narcolepsy occurs in approximately 1 of 3000 people, affecting mainly adolescents aged 15 to 30 years. Recently, people with narcolepsy were shown to exhibit extensive orexin/hypocretin neuronal loss. The orexin system regulates sleep/wake control via complex interactions with monoaminergic, cholinergic and GABA-ergic neuronal systems. Currently, no cure for narcolepsy exists, but some symptoms can be controlled with medication (eg, stimulants, antidepressants, etc). Orexin supplementation represents a more sophisticated way to treat narcolepsy because it addresses the underlying cause of the disease and not just the symptoms. Research on orexin supplementation in the treatment of sleep disorders has strongly increased over the past two decades. This review focuses on a brief description of narcolepsy, the mechanisms by which the orexin system regulates sleep/wake cycles, and finally, possible therapeutic options based on orexin supplementation in animal models and patients with narcolepsy.


Assuntos
Narcolepsia/tratamento farmacológico , Orexinas/uso terapêutico , Animais , Transplante de Células , Terapia Genética , Humanos , Narcolepsia/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
7.
Behav Pharmacol ; 29(6): 530-536, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29537989

RESUMO

Short-term moderate doses of serotonergic and dissociative hallucinogens can be useful in the treatment of anxiety. Recently, a trend has developed for long-term intermittent 'microdosing' (usually one-tenth of a 'full' active dose), with reports of long-lasting relief from anxiety and related disorders; however, there is no scientific evidence for the efficacy of therapeutic microdosing nor to show its lasting effects. The objective of this study was to test for lasting effects on anxiety in rats after microdosing with ketamine or psilocin. Over 6 days, Wistar rats (N=40) were administered ketamine (0.5 or 3 mg/kg), psilocin (0.05 or 0.075 mg/kg), or saline on three occasions. A 5-min elevated plus-maze test was conducted 48 h after the final drug treatment (n=8). Dependent variables were entries (frequency), spent time (%), and distance traveled (cm) in each zone, as well as total frequency of rears, stretch-attend postures, and head dips. Statistical analyses of drug effects used separate independent one-way analysis of variance and pair-wise comparisons using independent t-tests. Statistical effects were modest or borderline and were most consistent with a mildly anxiogenic profile, which was significant at lower doses; however, this conclusion remains tentative. The lower doses of ketamine and psilocin produced comparable effects (to one another) across each variable, as did the higher doses. This pattern of effects may suggest a common (e.g. neurotransmitter/receptor) mechanism. We conclude that microdosing with hallucinogens for therapeutic purposes might be counter-productive; however, more research is needed to confirm our findings and to establish their translational relevance to clinical 'psychedelic' therapy.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Alucinógenos/farmacologia , Ketamina/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Psilocibina/análogos & derivados , Animais , Relação Dose-Resposta a Droga , Locomoção/efeitos dos fármacos , Masculino , Psilocibina/farmacologia , Ratos , Ratos Wistar , Fatores de Tempo
8.
J Neurosci ; 36(7): 2161-75, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26888927

RESUMO

Postsynaptic N-methyl-d-aspartate receptors (NMDARs) phasically activated by presynaptically released glutamate are critical for synaptic transmission and plasticity. However, under pathological conditions, excessive activation of NMDARs by tonically increased ambient glutamate contributes to excitotoxicity associated with various acute and chronic neurological disorders. Here, using heterologously expressed GluN1/GluN2A and GluN1/GluN2B receptors and rat autaptic hippocampal microisland cultures, we show that pregnanolone sulfate inhibits NMDAR currents induced by a prolonged glutamate application with a higher potency than the NMDAR component of EPSCs. For synthetic pregnanolone derivatives substituted with a carboxylic acid moiety at the end of an aliphatic chain of varying length and attached to the steroid skeleton at C3, the difference in potency between tonic and phasic inhibition increased with the length of the residue. The steroid with the longest substituent, pregnanolone hemipimelate, had no effect on phasically activated receptors while inhibiting tonically activated receptors. In behavioral tests, pregnanolone hemipimelate showed neuroprotective activity without psychomimetic symptoms. These results provide insight into the influence of steroids on neuronal function and stress their potential use in the development of novel therapeutics with neuroprotective action. SIGNIFICANCE STATEMENT: Synaptic activation of N-methyl-d-aspartate receptors (NMDARs) plays a key role in synaptic plasticity, but excessive tonic NMDAR activation mediates excitotoxicity associated with many neurological disorders. Therefore, there is much interest in pharmacological agents capable of selectively blocking tonically activated NMDARs while leaving synaptically activated NMDARs intact. Here, we show that an endogenous neurosteroid pregnanolone sulfate is more potent at inhibiting tonically than synaptically activated NMDARs. Further, we report that a novel synthetic analog of pregnanolone sulfate, pregnanolone hemipimelate, inhibits tonic NMDAR currents without inhibiting the NMDAR component of the EPSC and shows neuroprotective activity in vivo without inducing psychomimetic side effects. These results suggest steroids may have a clinical advantage over other known classes of NMDAR inhibitors.


Assuntos
Pregnanos/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Células HEK293 , Hipocampo/metabolismo , Humanos , Masculino , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Técnicas de Patch-Clamp , Pregnanos/química , Pregnanolona/química , Pregnanolona/farmacologia , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/genética , Relação Estrutura-Atividade , Transmissão Sináptica/efeitos dos fármacos
9.
Neurobiol Learn Mem ; 141: 93-100, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28359853

RESUMO

Adult neurogenesis in the dentate gyrus adds a substantial number of new functional neurons to the hippocampus network in rodents. To date, however, the function of these new granule cells remains unclear. We conducted an experiment to assess the contribution of adult neurogenesis in the dentate gyrus to acquisition and reversal learning in a task that predominantly requires generalization of a rule. Young adult male Long-Evans rats were repeatedly administered either a cytostatic temozolomide or saline for a period of four weeks (3 injections per week). Post treatment, animals were injected with bromodeoxyuridine to quantify adult neurogenesis in the dentate gyrus. For behavioral assessment we used hippocampus-dependent active place avoidance with reversal in a Carousel maze. Animals first learned to avoid a 60° sector on the rotating arena. Afterwards, sector was relocated to the opposite side of the rotating arena (reversal). The administration of temozolomide significantly improved the reversal performance compared to saline-treated rats. Our results suggest a significant, level-dependent, improvement of reversal learning in animals with reduced adult neurogenesis in hippocampus.


Assuntos
Dacarbazina/análogos & derivados , Giro Denteado/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Reversão de Aprendizagem/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos , Animais , Antineoplásicos Alquilantes/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Dacarbazina/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Ratos , Ratos Long-Evans , Temozolomida
10.
Neuro Endocrinol Lett ; 37(4): 253-264, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27857040

RESUMO

There is a growing body of evidence that stressful events may affect the brain not only as a whole, but also in multiple laterality aspects. The present review is aimed at discussing the effect of stress and stress hormones on structural brain asymmetry. Differences and crossroads of functional and structural asymmetry are briefly mentioned throughout the document. The first part of this review summarizes major findings in the field of structural brain asymmetries in animals and humans from the evolutionary perspective. Additionally, effect of stress on animals is discussed generally. The second part then explores asymmetrical effects of stress on structural changes of principal brain areas - amygdala, hippocampus, neocortex, diencephalon, basal forebrain and basal ganglia from the point of normal lateralization, steroids, trauma and genetic factors. At the end we present hypothesis why stress appears to have asymmetrical effects on lateralized brain structures.


Assuntos
Encéfalo/diagnóstico por imagem , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Psicológico/metabolismo , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/metabolismo , Animais , Prosencéfalo Basal/diagnóstico por imagem , Prosencéfalo Basal/metabolismo , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/metabolismo , Evolução Biológica , Encéfalo/metabolismo , Diencéfalo/diagnóstico por imagem , Diencéfalo/metabolismo , Lateralidade Funcional , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Humanos , Imageamento por Ressonância Magnética , Neocórtex/diagnóstico por imagem , Neocórtex/metabolismo , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem
11.
Neurobiol Learn Mem ; 107: 42-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24211256

RESUMO

Nogo-A protein is an important inhibitor of axonal growth, which also regulates neuronal plasticity in the CNS. Mutations in the gene encoding Nogo-A or abnormalities in Nogo-A expression are linked to neuropsychiatric disorders such as schizophrenia. The present study assesses the impact of constitutively reduced expression of Nogo-A on place navigation in a novel transgenic rat model. Two spatial paradigms were used: (1) A battery of tests in the Carousel maze requiring continuous processing of spatial information with increasing demands for the segregation of reference frames and behavioral flexibility and (2) a delayed-matching-to-place version of the Morris water maze (MWM), which requires place navigation and is sensitive to deficits in one-trial-encoded place representation. The Carousel maze testing revealed a subtle but significant impairment in management of reference frames. Matching-to-place learning in the Morris water maze was unaffected, suggesting an intact representation of an unmarked goal. Our results show that Nogo-A deficiency leads to cognitive deficit in processing of the reference frames. Such a deficit may be the result of neuro-developmental alterations resulting from Nogo-A deficiency.


Assuntos
Aprendizagem da Esquiva/fisiologia , Regulação para Baixo , Aprendizagem em Labirinto/fisiologia , Proteínas da Mielina/metabolismo , Animais , Técnicas de Silenciamento de Genes , Masculino , Proteínas da Mielina/genética , Proteínas Nogo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Comportamento Espacial/fisiologia
12.
Biomed Pharmacother ; 176: 116821, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823278

RESUMO

Therapeutic options for Alzheimer's disease are limited. Dual compounds targeting two pathways concurrently may enable enhanced effect. The study focuses on tacrine derivatives inhibiting acetylcholinesterase (AChE) and simultaneously N-methyl-D-aspartate (NMDA) receptors. Compounds with balanced inhibitory potencies for the target proteins (K1578 and K1599) or increased potency for AChE (K1592 and K1594) were studied to identify the most promising pro-cognitive compound. Their effects were studied in cholinergic (scopolamine-induced) and glutamatergic (MK-801-induced) rat models of cognitive deficits in the Morris water maze. Moreover, the impacts on locomotion in the open field and AChE activity in relevant brain structures were investigated. The effect of the most promising compound on NMDA receptors was explored by in vitro electrophysiology. The cholinergic antagonist scopolamine induced a deficit in memory acquisition, however, it was unaffected by the compounds, and a deficit in reversal learning that was alleviated by K1578 and K1599. K1578 and K1599 significantly inhibited AChE in the striatum, potentially explaining the behavioral observations. The glutamatergic antagonist dizocilpine (MK-801) induced a deficit in memory acquisition, which was alleviated by K1599. K1599 also mitigated the MK-801-induced hyperlocomotion in the open field. In vitro patch-clamp corroborated the K1599-associated NMDA receptor inhibitory effect. K1599 emerged as the most promising compound, demonstrating pro-cognitive efficacy in both models, consistent with intended dual effect. We conclude that tacrine has the potential for development of derivatives with dual in vivo effects. Our findings contributed to the elucidation of the structural and functional properties of tacrine derivatives associated with optimal in vivo pro-cognitive efficacy.


Assuntos
Inibidores da Colinesterase , Cognição , Maleato de Dizocilpina , Aprendizagem em Labirinto , Ratos Wistar , Receptores de N-Metil-D-Aspartato , Tacrina , Animais , Tacrina/farmacologia , Inibidores da Colinesterase/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Masculino , Ratos , Maleato de Dizocilpina/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Cognição/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Escopolamina , Antagonistas de Aminoácidos Excitatórios/farmacologia , Memória/efeitos dos fármacos
13.
Eur J Med Chem ; 266: 116130, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218127

RESUMO

Tacrine (THA), a long withdrawn drug, is still a popular scaffold used in medicinal chemistry, mainly for its good reactivity and multi-targeted effect. However, THA-associated hepatotoxicity is still an issue and must be considered in drug discovery based on the THA scaffold. Following our previously identified hit compound 7-phenoxytacrine (7-PhO-THA), we systematically explored the chemical space with 30 novel derivatives, with a focus on low hepatotoxicity, anticholinesterase action, and antagonism at the GluN1/GluN2B subtype of the NMDA receptor. Applying the down-selection process based on in vitro and in vivo pharmacokinetic data, two candidates, I-52 and II-52, selective GluN1/GluN2B inhibitors thanks to the interaction with the ifenprodil-binding site, have entered in vivo pharmacodynamic studies. Finally, compound I-52, showing only minor affinity to AChE, was identified as a lead candidate with favorable behavioral and neuroprotective effects using open-field and prepulse inhibition tests, along with scopolamine-based behavioral and NMDA-induced hippocampal lesion models. Our data show that compound I-52 exhibits low toxicity often associated with NMDA receptor ligands, and low hepatotoxicity, often related to THA-based compounds.


Assuntos
Doença de Alzheimer , Doença Hepática Induzida por Substâncias e Drogas , Fármacos Neuroprotetores , Piperidinas , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptores de N-Metil-D-Aspartato , Tacrina/química , Inibidores da Colinesterase/química , Sítios de Ligação , Colinesterases , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico
14.
Schizophr Bull ; 49(6): 1637-1653, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37379469

RESUMO

BACKGROUND AND HYPOTHESIS: Schizophrenia is associated with altered energy metabolism, but the cause and potential impact of these metabolic changes remain unknown. 22q11.2 deletion syndrome (22q11.2DS) represents a genetic risk factor for schizophrenia, which is associated with the loss of several genes involved in mitochondrial physiology. Here we examine how the haploinsufficiency of these genes could contribute to the emergence of schizophrenia in 22q11.2DS. STUDY DESIGN: We characterize changes in neuronal mitochondrial function caused by haploinsufficiency of mitochondria-associated genes within the 22q11.2 region (PRODH, MRPL40, TANGO2, ZDHHC8, SLC25A1, TXNRD2, UFD1, and DGCR8). For that purpose, we combine data from 22q11.2DS carriers and schizophrenia patients, in vivo (animal models) and in vitro (induced pluripotent stem cells, IPSCs) studies. We also review the current knowledge about seven non-coding microRNA molecules located in the 22q11.2 region that may be indirectly involved in energy metabolism by acting as regulatory factors. STUDY RESULTS: We found that the haploinsufficiency of genes of interest is mainly associated with increased oxidative stress, altered energy metabolism, and calcium homeostasis in animal models. Studies on IPSCs from 22q11.2DS carriers corroborate findings of deficits in the brain energy metabolism, implying a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS. CONCLUSIONS: The haploinsufficiency of genes within the 22q11.2 region leads to multifaceted mitochondrial dysfunction with consequences to neuronal function, viability, and wiring. Overlap between in vitro and in vivo studies implies a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS.


Assuntos
Síndrome de DiGeorge , MicroRNAs , Esquizofrenia , Animais , Humanos , Síndrome de DiGeorge/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Ribossômicas/metabolismo
15.
Front Behav Neurosci ; 17: 1280608, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38268794

RESUMO

The open field test (OFT) is a basic and most widely used test for investigation in animal studies of the neurobiological basis of anxiety and screening for novel drug targets. Here, we present the results of an OFT for weakly electric fish Gnathonemus petersii. This study aimed to describe the behavioral response of G. petersii exposed to an OFT, simultaneously with an evaluation of electrical organ discharges (EOD), to determine whether any association between EOD and patterns of motor behavior in the OFT exists. Treatment of OFT activity and its temporal patterning was assessed for the whole 6-min trial as well as per-minute distributions of activity using a near-infrared camera and an EOD data acquisition system. Our results demonstrated that the time spent, distance moved, and time of activity were significantly higher in the periphery of the OFT arena. The zone preference pattern over the 6-min test session showed that G. petersii prefer the outer zone (83.61%) over the center of the arena (16.39%). The motor behavior of fish measured as distance moved, active time, and swim speed were correlated with the number of EODs; however, no relationship was found between EOD and acceleration.

16.
Biomed Pharmacother ; 167: 115600, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783152

RESUMO

Frentizole is immunosuppressive drug with low acute toxicity and lifespan-prolonging effect. Recently, frentizole´s potential to disrupt toxic amyloid ß (Aß) - Aß-binding alcohol dehydrogenase (ABAD) interaction in mitochondria in Alzheimer´s brains has been revealed. Another broadly studied drug with anti-aging and immunosuppressive properties is an mTOR inhibitor - rapamycin. Since we do not yet precisely know what is behind the lifespan-prolonging effect of rapamycin and frentizole, whether it is the ability to inhibit the mTOR signaling pathway, reduction in mitochondrial toxicity, immunosuppressive effect, or a combination of all of them, we have decided within our previous work to dock the entire in-house library of almost 240 Aß-ABAD modulators into the FKBP-rapamycin-binding (FRB) domain of mTOR in order to interlink mTOR-centric and mitochondrial free radical-centric theories of aging and thus to increase the chances of success. Based on the results of the docking study, molecular dynamic simulation and MM-PBSA calculations, we have selected nine frentizole-like compounds (1 - 9). Subsequently, we have determined their real physical-chemical properties (logP, logD, pKa and solubility in water and buffer), cytotoxic/cytostatic, mTOR inhibitory, and in vitro anti-senescence (senolytic and senomorphic) effects. Finally, the three best candidates (4, 8, and 9) have been forwarded for in vivo safety studies to assess their acute toxicity and pharmacokinetic properties. Based on obtained results, only compound 4 demonstrated the best results within in vitro testing, the ability to cross the blood-brain barrier and the lowest acute toxicity (LD50 in male mice 559 mg/kg; LD50 in female mice 575 mg/kg).


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Feminino , Masculino , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Senoterapia , Imunossupressores , Sirolimo , Serina-Treonina Quinases TOR
17.
ACS Chem Neurosci ; 14(10): 1870-1883, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37126803

RESUMO

Multiple molecular targets have been identified to mediate membrane-delimited and nongenomic effects of natural and synthetic steroids, but the influence of steroid metabolism on neuroactive steroid signaling is not well understood. To begin to address this question, we set out to identify major metabolites of a neuroprotective synthetic steroid 20-oxo-5ß-pregnan-3α-yl l-glutamyl 1-ester (pregnanolone glutamate, PAG) and characterize their effects on GABAA and NMDA receptors (GABARs, NMDARs) and their influence on zebrafish behavior. Gas chromatography-mass spectrometry was used to assess concentrations of PAG and its metabolites in the hippocampal tissue of juvenile rats following intraperitoneal PAG injection. PAG is metabolized in the peripheral organs and nervous tissue to 20-oxo-17α-hydroxy-5ß-pregnan-3α-yl l-glutamyl 1-ester (17-hydroxypregnanolone glutamate, 17-OH-PAG), 3α-hydroxy-5ß-pregnan-20-one (pregnanolone, PA), and 3α,17α-dihydroxy-5ß-pregnan-20-one (17-hydroxypregnanolone, 17-OH-PA). Patch-clamp electrophysiology experiments in cultured hippocampal neurons demonstrate that PA and 17-OH-PA are potent positive modulators of GABARs, while PAG and 17-OH-PA have a moderate inhibitory effect at NMDARs. PAG, 17-OH-PA, and PA diminished the locomotor activity of zebrafish larvae in a dose-dependent manner. Our results show that PAG and its metabolites are potent modulators of neurotransmitter receptors with behavioral consequences and indicate that neurosteroid-based ligands may have therapeutic potential.


Assuntos
Pregnanolona , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Pregnanolona/farmacologia , Pregnanolona/química , Peixe-Zebra , Ácido Glutâmico , Ésteres , Ácido gama-Aminobutírico , Receptores de GABA-A
18.
Front Aging Neurosci ; 14: 996234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36437993

RESUMO

Background: Gut microbiota may influence brain functions. Therefore, we prepared a study protocol for a double-blind, crossover, randomized clinical trial to determine the complex effects of human probiotics on memory, psychological, and biological measures in the elderly. Methods: We selected eligible participants using an effective electronic questionnaire containing the inclusion and exclusion criteria and a brief electronic cognitive test. One-third of the respondents with the worst cognitive scores on the electronic test are randomized to group A, starting with a 3-month probiotic intervention, and to group B, starting with a placebo. In a crossover design, both groups change their intervention/placebo status after 3 months for the next 3 months. Participants refusing longer personal assessments due to the COVID-19 pandemic were randomly allocated to one of two subgroups assessed online. Participants in both groups are matched in age, education, gender, and cognitive scores on electronic testing at baseline. At three time points, participants are assessed using a neuropsychological battery, self-report measures of mood, a physical fitness test, blood, urine, and stool samples, and actigraphy. A subset of participants also provided their biological samples and underwent the neuropsychological battery in an extended testing phase 3 months after study termination to find out the long-term effect of the intervention. Discussion: This is the first trial to address the comprehensive effects of human probiotics on memory and many other measures in the elderly. We assume that the probiotic group will have better outcomes than the placebo group after the first and second trimesters. We expect that the probiotic effect will persist for the next 3 months. These study's findings will contribute to an interesting area of how to improve memory, psychological and biological and other factors naturally and will examine the importance of probiotics for overall health in the elderly. Clinical trial registration: [clinicaltrials.gov], identifier [NCT05051501].

19.
Front Neurol ; 13: 874121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693010

RESUMO

Background: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) leading to the loss of myelin and axons. Diagnosis is based on clinical findings, MRI, and analysis of cerebrospinal fluid (CSF). CSF is an ultrafiltrate of plasma and reflects inflammatory processes in the CNS. The aim of this study was to perform metabolomics analysis of CSF in patients after the first attack of MS and healthy controls and try to find new specific analytes for MS including those potentially predicting disease activities at the onset. Methods: We collected CSF from 19 patients (16 females, aged 19-55 years) after the first attack of clinical symptoms who fulfilled revised McDonald criteria of MS and CSF of 19 controls (16 females, aged 19-50 years). Analyses of CSF samples were provided using the high-performance liquid chromatography system coupled with a mass spectrometer with a high-resolution detector (TripleTOF 5600, AB Sciex, Canada). Results: Approximately 130 selected analytes were identified, and 30 of them were verified. During the targeted analysis, a significant decrease in arginine and histidine and a less significant decrease in the levels of asparagine, leucine/isoleucine, and tryptophan, together with a significant increase of palmitic acid in the patient group, were found. Conclusion: We observed significant differences in amino and fatty acids in the CSF of newly diagnosed patients with MS in comparison with controls. The most significant changes were observed in levels of arginine, histidine, and palmitic acid that may predict inflammatory disease activity. Further studies are necessary to support these findings as potential biomarkers of MS.

20.
Sci Rep ; 12(1): 9361, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672428

RESUMO

Stable inter-individual differences in behaviour and personality have been studied for several decades now. The aim of this study was to test the repeatability of behaviour of the Long Evans strain of laboratory rats in order to assess their inter-individual differences. Male laboratory rats (n = 36) were tested in a series of tasks (Open field test, Elevated plus maze test, and modified T-maze test) repeated over time to assess their personality traits. To evaluate the temporal stability of the behaviour, we calculated repeatability estimates of the examined traits. We also checked for a link in behavioural traits across these experiments, which would suggest the existence of a behavioural syndrome. We found stable inter-individual differences in behaviour. Interestingly, no link emerged between the tasks we studied and therefore we did not find support for a behavioural syndrome. The lack of behavioural correlations between these experiments suggests that the results derived from these tasks should be interpreted carefully, as these experiments may measure various behavioural axes. Moreover, the animals habituate to the apparatus. Consequently, behaviour in the Open field test and Elevated plus maze test is not fully consistent and repeatable across subsequent trials.


Assuntos
Comportamento Animal , Individualidade , Animais , Masculino , Aprendizagem em Labirinto , Personalidade , Ratos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA