Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Mol Cell ; 67(6): 922-935.e5, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28918902

RESUMO

The mechanisms that link environmental and intracellular stimuli to mitochondrial functions, including fission/fusion, ATP production, metabolite biogenesis, and apoptosis, are not well understood. Here, we demonstrate that the nutrient-sensing mechanistic/mammalian target of rapamycin complex 1 (mTORC1) stimulates translation of mitochondrial fission process 1 (MTFP1) to control mitochondrial fission and apoptosis. Expression of MTFP1 is coupled to pro-fission phosphorylation and mitochondrial recruitment of the fission GTPase dynamin-related protein 1 (DRP1). Potent active-site mTOR inhibitors engender mitochondrial hyperfusion due to the diminished translation of MTFP1, which is mediated by translation initiation factor 4E (eIF4E)-binding proteins (4E-BPs). Uncoupling MTFP1 levels from the mTORC1/4E-BP pathway upon mTOR inhibition blocks the hyperfusion response and leads to apoptosis by converting mTOR inhibitor action from cytostatic to cytotoxic. These data provide direct evidence for cell survival upon mTOR inhibition through mitochondrial hyperfusion employing MTFP1 as a critical effector of mTORC1 to govern cell fate decisions.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/enzimologia , Dinâmica Mitocondrial , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Apoptose , Sistemas CRISPR-Cas , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Dinaminas/genética , Dinaminas/metabolismo , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial/efeitos dos fármacos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Transfecção
2.
Org Biomol Chem ; 21(8): 1692-1703, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36734617

RESUMO

A series of metal-free tandem reactions for the synthesis of pharmaceutically important 2-substituted benzoazoles from isothiocyanates and 2-aminothiophenol under catalyst-free conditions in the presence of Et-PMO-Me-PrSO3H (1a) and SBA-15-PrSO3H (1b) as solid acids were carried out in a highly selective way under solvent free conditions. A significant selectivity changeover toward either 2-mercaptobenzoxazole or 2-aminobenzoazole derivatives could be achieved by changing the employed catalyst from the relatively hydrophobic material 1a to the more hydrophilic catalyst 1b. This simple experimental procedure with a novel selective approach toward benzoazoles accompanied by green and reusable catalysts could be considered as an alternative to the existing methods for the synthesis of 2-substituted benzoazole derivatives.

3.
BMC Oral Health ; 23(1): 870, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974136

RESUMO

BACKGROUND: Frequent bacterial plaque buildup at the gingival margin and crevice can provoke an inflammatory reaction in gingival tissues which manifests as gingivitis. Probiotics could serve as a beneficial complementary therapy for treating gingival inflammation. The main aim of this research was to investigate the effect of the Lactobacillus plantarum MK06 probiotic strain on the treatment of gingivitis. METHODS: Patients with gingivitis, who were referred to a private clinic and were systematically healthy, were included in this randomized, triple-blind, placebo-controlled trial. They were instructed to use either placebo or Lactobacillus plantarum suspensions for one minute two times a day after tooth-brushing for four weeks. Then, the clinical parameters of gingivitis, including plaque index (PI), gingival index (GI), bleeding on probing (BOP), and oral hygiene index (OHI-s), were measured in the first, second, and fourth weeks. A total of forty-two patients were randomly assigned to the experimental (n = 21) and control (n = 21) groups. The mean age of the experimental and control groups was 29.10 and 28.48, respectively. RESULTS: The mean scores of BOP, GI, PI, and OHI-s reduced over time in both the control and test groups. However, according to the Mann-Whitney test, the difference between the two groups was not significant at the same time intervals (P ≥ 0.05) and only GI showed a significant difference in the fourth week (GI-3, P = 0.006). Nevertheless, the experimental group experienced a higher overall reduction rate than the control group. The BOP, GI, PI, and OHI-s scores decreased by 0.081, 0.204, 0.186, and 0.172 times in the second week, respectively, resulting from the interaction of time and the intervention, which considerably diminished these indices. CONCLUSION: This study shows the potential of the probiotic Lactobacillus plantarum MK06 suspension as a promoting therapeutic adjuvant in the treatment of gingivitis.


Assuntos
Gengivite , Lactobacillus plantarum , Probióticos , Humanos , Gengivite/tratamento farmacológico , Gengiva , Laticínios , Probióticos/uso terapêutico , Índice de Placa Dentária
4.
Curr Microbiol ; 79(4): 125, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258711

RESUMO

Various studies have been conducted to understand the impact of environmental pollutants on cyanobacteria due to their abundant presence in aquatic and terrestrial environments, specific morphological and physiological characteristics, and high ecological flexibility in response to environmental changes. Here, the effect of different concentrations of cadmium on two native strains of cyanobacteria, namely Synechococcus sp. HS01 and Limnothrix sp. KO01 was studied and compared with each other. In this regard, the cyanobacterial growth, pigment contents, and esterase enzyme activity were evaluated after exposure of the cells to different concentrations of cadmium (II). The toxic effects of Cd(II) on the growth rate of Limnothrix sp. KO01, even at low concentrations, tended to be higher than those for Synechococcus sp. HS01. The content of pigments decreased by an increase in Cd(II) concentration. In compliance with the cell growth, the changes occurred in pigment contents of Limnothrix sp. KO01 was more sensitive than Synechococcus sp. HS01 in the presence of different concentrations of cadmium. Flow cytometry analysis of Cd(II) effects on esterase activity of both strains after 6, 24, 48, and 72 h of exposure to Cd(II) concentrations of 9, 27, 63, and 90 µM showed that tolerance to Cd(II) toxicity in Limnothrix sp. KO01 is less than Synechococcus sp. HS01. The results obtained in this study suggest high potentials of Synechococcus sp. HS01 for heavy metal bioaccumulation due to its considerable tolerance to cadmium.


Assuntos
Metais Pesados , Synechococcus , Cádmio/toxicidade , Esterases/farmacologia , Metais Pesados/farmacologia
5.
Blood ; 133(4): 344-355, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30538134

RESUMO

Transferrin receptor 1 (Tfr1) mediates uptake of circulating transferrin-bound iron to developing erythroid cells and other cell types. Its critical physiological function is highlighted by the embryonic lethal phenotype of Tfr1-knockout (Tfrc-/-) mice and the pathologies of several tissue-specific knockouts. We generated TfrcAlb-Cre mice bearing hepatocyte-specific ablation of Tfr1 to explore implications in hepatocellular and systemic iron homeostasis. TfrcAlb-Cre mice are viable and do not display any apparent liver pathology. Nevertheless, their liver iron content (LIC) is lower compared with that of control Tfrcfl/fl littermates as a result of the reduced capacity of Tfr1-deficient hepatocytes to internalize iron from transferrin. Even though liver Hamp messenger RNA (mRNA) and serum hepcidin levels do not differ between TfrcAlb-Cre and Tfrcfl/fl mice, Hamp/LIC and hepcidin/LIC ratios are significantly higher in the former. Importantly, this is accompanied by modest hypoferremia and microcytosis, and it predisposes TfrcAlb-Cre mice to iron-deficiency anemia. TfrcAlb-Cre mice appropriately regulate Hamp expression following dietary iron manipulations or holo-transferrin injection. Holo-transferrin also triggers proper induction of Hamp mRNA, ferritin, and Tfr2 in primary TfrcAlb-Cre hepatocytes. We further show that these cells can acquire 59Fe from 59Fe-transferrin, presumably via Tfr2. We conclude that Tfr1 is redundant for basal hepatocellular iron supply but essential for fine-tuning hepcidin responses according to the iron load of hepatocytes. Our data are consistent with an inhibitory function of Tfr1 on iron signaling to hepcidin via its interaction with Hfe. Moreover, they highlight hepatocellular Tfr1 as a link between cellular and systemic iron-regulatory pathways.


Assuntos
Antígenos CD/metabolismo , Hepatócitos/metabolismo , Hepcidinas/metabolismo , Homeostase , Ferro/metabolismo , Receptores da Transferrina/metabolismo , Anemia Ferropriva/patologia , Animais , Ferritinas/metabolismo , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Marcação de Genes , Hepatócitos/efeitos dos fármacos , Hepcidinas/genética , Homeostase/efeitos dos fármacos , Integrases/metabolismo , Ferro da Dieta/farmacologia , Camundongos Endogâmicos C57BL , Receptores da Transferrina/deficiência , Transferrina/metabolismo
6.
Mol Pharm ; 18(8): 3171-3180, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34279974

RESUMO

Current treatment of chronic wounds has been critically limited by various factors, including bacterial infection, biofilm formation, impaired angiogenesis, and prolonged inflammation. Addressing these challenges, we developed a multifunctional wound dressing-based three-pronged approach for accelerating wound healing. The multifunctional wound dressing, composed of nanofibers, functional nanoparticles, natural biopolymers, and selected protein and peptide, can target multiple endogenous repair mechanisms and represents a promising alternative to current wound healing products.


Assuntos
Anexina A1/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Bandagens , Diabetes Mellitus Experimental/complicações , Proteínas Relacionadas à Folistatina/administração & dosagem , Peptídeos/administração & dosagem , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Ferida Cirúrgica/complicações , Ferida Cirúrgica/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/complicações , Infecção dos Ferimentos/tratamento farmacológico , Células 3T3 , Animais , Materiais Biocompatíveis/administração & dosagem , Biopolímeros/química , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Células HaCaT , Humanos , Nanopartículas Magnéticas de Óxido de Ferro/química , Masculino , Teste de Materiais/métodos , Camundongos , Nanofibras/química , Ratos , Ratos Wistar , Infecções Estafilocócicas/microbiologia , Resultado do Tratamento , Infecção dos Ferimentos/microbiologia
7.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32169940

RESUMO

A longstanding awareness in generating resistance to common antimicrobial therapies by Gram-negative bacteria has made them a major threat to global health. The application of antimicrobial peptides as a therapeutic agent would be a great opportunity to combat bacterial diseases. Here, we introduce a new antimicrobial peptide (∼8.3 kDa) from probiotic strain Lactobacillus acidophilus ATCC 4356, designated acidocin 4356 (ACD). This multifunctional peptide exerts its anti-infective ability against Pseudomonas aeruginosa through an inhibitory action on virulence factors, bacterial killing, and biofilm degradation. Reliable performance over tough physiological conditions and low hemolytic activity confirmed a new hope for the therapeutic setting. Antibacterial kinetic studies using flow cytometry technique showed that the ACD activity is related to the change in permeability of the membrane. The results obtained from molecular dynamic (MD) simulation were perfectly suited to the experimental data of ACD behavior. The structure-function relationship of this natural compound, along with the results of transmission electron microscopy analysis and MD simulation, confirmed the ability of the ACD aimed at enhancing bacterial membrane perturbation. The peptide was effective in the treatment of P. aeruginosa infection in mouse model. The results support the therapeutic potential of ACD for the treatment of Pseudomonas infections.IMPORTANCE Multidrug-resistant bacteria are a major threat to global health, and the Pseudomonas bacterium with the ability to form biofilms is considered one of the main causative agents of nosocomial infections. Traditional antibiotics have failed because of increased resistance. Thus, finding new biocompatible antibacterial drugs is essential. Antimicrobial peptides are produced by various organisms as a natural defense mechanism against pathogens, inspiring the possible design of the next generation of antibiotics. In this study, a new antimicrobial peptide was isolated from Lactobacillus acidophilus ATCC 4356, counteracting both biofilm and planktonic cells of Pseudomonas aeruginosa A detailed investigation was then conducted concerning the functional mechanism of this peptide by using fluorescence techniques, electron microscopy, and in silico methods. The antibacterial and antibiofilm properties of this peptide may be important in the treatment of Pseudomonas infections.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/farmacologia , Lactobacillus acidophilus/química , Pseudomonas aeruginosa/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Cinética , Simulação de Dinâmica Molecular , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Virulência/efeitos dos fármacos
8.
Plant Physiol ; 179(2): 507-518, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30538165

RESUMO

Like other positive-strand RNA viruses, the Turnip mosaic virus (TuMV) infection leads to the formation of viral vesicles at the endoplasmic reticulum (ER). Once released from the ER, the viral vesicles mature intracellularly and then move intercellularly. While it is known that the membrane-associated viral protein 6K2 plays a role in the process, the contribution of host proteins has been poorly defined. In this article, we show that 6K2 interacts with RHD3, an ER fusogen required for efficient ER fusion. When RHD3 is mutated, a delay in the development of TuMV infection is observed. We found that the replication of TuMV and the cell-to-cell movement of its replication vesicles are impaired in rhd3 This defect can be tracked to a delayed maturation of the viral vesicles from the replication incompetent to the competent state. Furthermore, 6K2 can relocate RHD3 from the ER to viral vesicles. However, a Golgi-localized mutated 6K2GV is unable to interact and relocate RHD3 to viral vesicles. We conclude that the maturation of TuMV replication vesicles requires RHD3 for efficient viral replication and movement.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Potyvirus/fisiologia , Replicação Viral/fisiologia , Arabidopsis/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Retículo Endoplasmático/virologia , Proteínas de Ligação ao GTP/genética , Complexo de Golgi/metabolismo , Microrganismos Geneticamente Modificados , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Mutação , Células Vegetais/virologia , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
9.
Plant Physiol ; 180(3): 1375-1388, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31019004

RESUMO

Turnip mosaic virus (TuMV) reorganizes the endomembrane system of the infected cell to generate endoplasmic-reticulum-derived motile vesicles containing viral replication complexes. The membrane-associated viral protein 6K2 plays a key role in the formation of these vesicles. Using confocal microscopy, we observed that this viral protein, a marker for viral replication complexes, localized in the extracellular space of infected Nicotiana benthamiana leaves. Previously, we showed that viral RNA is associated with multivesicular bodies (MVBs). Here, using transmission electron microscopy, we observed the proliferation of MVBs during infection and their fusion with the plasma membrane that resulted in the release of their intraluminal vesicles in the extracellular space. Immunogold labeling with a monoclonal antibody that recognizes double-stranded RNA indicated that the released vesicles contained viral RNA. Focused ion beam-extreme high-resolution scanning electron microscopy was used to generate a three-dimensional image that showed extracellular vesicles in the cell wall. The presence of TuMV proteins in the extracellular space was confirmed by proteomic analysis of purified extracellular vesicles from N benthamiana and Arabidopsis (Arabidopsis thaliana). Host proteins involved in biotic defense and in interorganelle vesicular exchange were also detected. The association of extracellular vesicles with viral proteins and RNA emphasizes the implication of the plant extracellular space in viral infection.


Assuntos
Espaço Extracelular/metabolismo , Corpos Multivesiculares/metabolismo , Folhas de Planta/metabolismo , Potyvirus/metabolismo , Arabidopsis/metabolismo , Arabidopsis/virologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Espaço Extracelular/virologia , Interações Hospedeiro-Patógeno , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Corpos Multivesiculares/ultraestrutura , Corpos Multivesiculares/virologia , Folhas de Planta/virologia , Potyvirus/genética , Potyvirus/fisiologia , Proteômica/métodos , RNA Viral/genética , RNA Viral/metabolismo , Nicotiana/metabolismo , Nicotiana/virologia , Proteínas Virais/metabolismo , Replicação Viral/genética
10.
Biochem Biophys Res Commun ; 509(3): 687-693, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30616890

RESUMO

Atherosclerosis and cancer are the leading causes of mortality around the world that share common pathogenic pathways. The aim of this study is the investigation of the protein profile of atherosclerotic plaque in order to find similar biomarker between cancer and atherosclerosis. The small pieces of human coronary artery containing advanced atherosclerotic plaque is obtained from patients during bypass surgery. Structural characterization of type V plaque, including fibrous connective tissue, necrotic lipid core, cholesterol clefts and calcium deposits are performed using high resolution transmission electron microscopy (HR-TEM). The protein profile of atherosclerosis plaque is also analyzed using 2-dimensional electrophoresis and matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF). TEM analysis shows that vascular smooth muscle cells (VSMCs) exhibit different and uncommon morphologies in atherosclerotic plaque which is correlated to the proliferative state of the cells. The proteomics analysis reveals proteins related to atherosclerosis formation including Mimecan, Ras Suppressor Protein-1 (RSUP-1) and Cathepsin D which identified as biomarker of cancerous tumors. The expression of Mimecan and RSUP-1 is down-regulated in atherosclerotic plaque while the expression of Cathepsin D is up-regulated. These data support that atherosclerotic plaque presents some degree of tumorgenesis with the significant activity of VSMCs as the key player in atherogenesis.


Assuntos
Catepsina D/análise , Peptídeos e Proteínas de Sinalização Intercelular/análise , Neoplasias/patologia , Placa Aterosclerótica/patologia , Fatores de Transcrição/análise , Biomarcadores Tumorais/análise , Eletroforese em Gel Bidimensional , Humanos , Neoplasias/química , Placa Aterosclerótica/química , Proteoma/análise , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Ecotoxicol Environ Saf ; 169: 40-49, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30419505

RESUMO

The present study is pursuing our previous research, focused on some aspects of Nostoc entophytum ISC32 cell response to the stress caused by exposure to cadmium at the cellular and molecular levels. Variations in the antioxidant system (catalase and ascorbate peroxidase activity) of N. entophytum ISC32 exposed to varying concentrations of Cd (2, and 5 mg/L) resulted in a significant increase in the activity of both catalase and peroxidase. Activity of these enzymes was, however, not significantly changed in the presence of Cd concentrations of 10 and 20 mg/L. Levels of lipid peroxidation, as measured by malondialdehyde (MDA) assay, were observed in response to exposure to Cd (20 mg/L). There was, however, a sharp drop in both antioxidant and lipid peroxidation activities of Cd treated cells after 5 days exposure, likely in consequence of cellular damage. The content of chlorophyll a and phycobiliproteins of living cells were altered under Cd-induced conditions. TEM images of cyanobacterial cells treated with Cd showed cell surface alteration and modification along with altered cellular microcompartments. Cyanobacterial cells treated with Cd at concentrations below the minimum inhibitory concentration (MIC) remained with no apparent structural changes. However, at a higher concentration of Cd (30 mg/L), a clear detachment effect was observed between the mucilage external layer and cell membrane which may be attributed to cell plasmolysis due to toxic effects of Cd. Subsequently, the thickness of the ring-shaped mucilage external layer increased likely as a result of the cell defense mechanisms against toxic concentrations of Cd. Characterization of cells treated with Cd (30 and 150 mg/L) by scanning electron microscopy (SEM) indicated cell shrinkage with varying degrees of distortion and surface wrinkling. Energy-dispersive X-ray spectrometry (EDS) analysis suggested that Cd was not present as nanoparticles within the cell, but in the form of salt or other molecular structures. The up-regulation of chaperons was confirmed for GroEL and HtpG using real-time PCR and northern blot analyses. Interestingly, the expression of GroEL was markedly increased at lower Cd concentration (5 mg/L). However, the ISC32 strain accrued higher levels of HtpG transcript in response to an elevated concentration of Cd (15 mg/L). This pattern seems to be related to the fast and early induction of GroEL, which may be necessary for induction of other factors and heat shock proteins such as HtpG in Cd-treated Nostoc cells. The result of this study paves the way for a more detailed exploration of Cd effects on the defense mechanisms of cyanobacteria. Our research also shed some light on how cyanobacterial cells have evolved to respond to the heavy metal toxicity at the cellular, molecular and ultrastructural levels.


Assuntos
Proteínas de Bactérias/metabolismo , Cádmio/toxicidade , Chaperonina 60/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Nostoc/efeitos dos fármacos , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Clorofila A/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Nostoc/enzimologia , Nostoc/metabolismo , Nostoc/ultraestrutura , Oxirredução , Estresse Oxidativo , Peroxidase/metabolismo , Peroxidases/metabolismo , Ficobiliproteínas/metabolismo , Superóxido Dismutase/metabolismo
12.
Mikrochim Acta ; 186(4): 239, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30868266

RESUMO

The authors describe the preparation of two kinds of periodic mesoporous organosilicas (PMOs). The first kind is monofunctional and has a bridged alkyl imidazolium framework (PMO-IL). The other is a two-dimensional (2D) hexagonal bifunctional periodic mesoporous organosilica (BFPMO) with bridged IL-phenyl or -ethyl units. The CPMOs were utilized as highly sensitive and stable sorbents for microextraction by packed sorbent. The materials were characterized by SEM, TEM, FT-IR, and N2 adsorption-desorption analysis. The adsorption capacities of the sorbents were investigated by using phenoxy acid herbicides as model analytes. The effects of bifunctionality and type of additional surface groups (phenyl or ethyl) on the efficiency of the extraction is emphasized. Three kinds of environmental contaminants, viz. phenoxy acid herbicides (CPAs), polycyclic aromatic hydrocarbons and chlorophenols were then studied with respect to their extraction by the sorbents. The interactions between the CPAs and the sorbents were evaluated by pH-changing processes to explore the interactions that play a major role. The selectivity of the sorbents was investigated by extraction of other types of analytes of with various polarity and charge. The BFPMOs display the typical good chemical stability of silica materials. The extraction properties are much better compared to commercial silicas. This is assumed to be due to the highly ordered mesoporous structures and the different types of probable interactions with analytes. The performance of the method was evaluated by extraction of CPAs as model analytes from aqueous samples, and quantification by GC with FID detection. Under optimized conditions, low limits of detection (0.1-0.5 µg.L-1) and a wide linearity (0.5-200 µg.L-1) were obtained. The method was applied to the trace analysis of CPAs in farm waters and rice samples. Graphical abstract Monofunctional periodic mesoporous organosilica with bridged alkyl imidazolium frameworks and bi-functional periodic mesoporous organosilica containing bridged ionic liquids and phenyl or -ethyl, have been successfully synthesized and utilized in microextractions by packed sorbent sorbents.

13.
Plant Physiol ; 175(4): 1732-1744, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29089395

RESUMO

Plant viruses move from the initially infected cell to adjacent cells through plasmodesmata (PDs). To do so, viruses encode dedicated protein(s) that facilitate this process. How viral proteins act together to support the intercellular movement of viruses is poorly defined. Here, by using an infection-free intercellular vesicle movement assay, we investigate the action of CI (cylindrical inclusion) and P3N-PIPO (amino-terminal half of P3 fused to Pretty Interesting Potyviridae open reading frame), the two PD-localized potyviral proteins encoded by Turnip mosaic virus (TuMV), in the intercellular movement of the viral replication vesicles. We provide evidence that CI and P3N-PIPO are sufficient to support the PD targeting and intercellular movement of TuMV replication vesicles induced by 6K2, a viral protein responsible for the generation of replication vesicles. 6K2 interacts with CI but not P3N-PIPO. When this interaction is impaired, the intercellular movement of TuMV replication vesicles is inhibited. Furthermore, in transmission electron microscopy, vesicular structures are observed in connection with the cylindrical inclusion bodies at structurally modified PDs in cells coexpressing 6K2, CI, and P3N-PIPO. CI is directed to PDs through its interaction with P3N-PIPO. We hypothesize that CI serves as a docking point for PD targeting and the intercellular movement of TuMV replication vesicles. This work contributes to a better understanding of the roles of different viral proteins in coordinating the intercellular movement of viral replication vesicles.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Potyvirus/fisiologia , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Proteínas do Movimento Viral em Plantas , Nicotiana/fisiologia , Nicotiana/virologia , Proteínas Virais/genética
14.
PLoS Genet ; 11(1): e1004811, 2015 01.
Artigo em Inglês | MEDLINE | ID: mdl-25569806

RESUMO

Model genetic systems are invaluable, but limit us to understanding only a few organisms in detail, missing the variations in biological processes that are performed by related organisms. One such diverse process is the formation of magnetosome organelles by magnetotactic bacteria. Studies of model magnetotactic α-proteobacteria have demonstrated that magnetosomes are cubo-octahedral magnetite crystals that are synthesized within pre-existing membrane compartments derived from the inner membrane and orchestrated by a specific set of genes encoded within a genomic island. However, this model cannot explain all magnetosome formation, which is phenotypically and genetically diverse. For example, Desulfovibrio magneticus RS-1, a δ-proteobacterium for which we lack genetic tools, produces tooth-shaped magnetite crystals that may or may not be encased by a membrane with a magnetosome gene island that diverges significantly from those of the α-proteobacteria. To probe the functional diversity of magnetosome formation, we used modern sequencing technology to identify hits in RS-1 mutated with UV or chemical mutagens. We isolated and characterized mutant alleles of 10 magnetosome genes in RS-1, 7 of which are not found in the α-proteobacterial models. These findings have implications for our understanding of magnetosome formation in general and demonstrate the feasibility of applying a modern genetic approach to an organism for which classic genetic tools are not available.


Assuntos
Desulfovibrio/genética , Magnetossomos/genética , Organelas/genética , Alelos , Desulfovibrio/metabolismo , Óxido Ferroso-Férrico/metabolismo , Ilhas Genômicas , Ferro/metabolismo , Família Multigênica , Mutação
15.
Nano Lett ; 16(8): 4779-87, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27280476

RESUMO

Hydrogels composed of two-dimensional (2D) nanomaterials have become an important alternative to replace traditional inorganic scaffolds for tissue engineering. Here, we describe a novel nanocrystalline material with 2D morphology that was synthesized by tuning the crystallization of the sodium-magnesium-phosphate system. We discovered that the sodium ion can regulate the precipitation of magnesium phosphate by interacting with the crystal's surface causing a preferential crystal growth that results in 2D morphology. The 2D nanomaterial gave rise to a physical hydrogel that presented extreme thixotropy, injectability, biocompatibility, bioresorption, and long-term stability. The nanocrystalline material was characterized in vitro and in vivo and we discovered that it presented unique biological properties. Magnesium phosphate nanosheets accelerated bone healing and osseointegration by enhancing collagen formation, osteoblasts differentiation, and osteoclasts proliferation through up-regulation of COL1A1, RunX2, ALP, OCN, and OPN. In summary, the 2D magnesium phosphate nanosheets could bring a paradigm shift in the field of minimally invasive orthopedic and craniofacial interventions because it is the only material available that can be injected through high gauge needles into bone defects in order to accelerate bone healing and osseointegration.

16.
Microbiology (Reading) ; 162(2): 246-255, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26747275

RESUMO

Among nine cyanobacterial strains isolated from oil-contaminated regions in southern Iran, an isolate with maximum cadmium uptake capacity was selected and identified on the basis of analysis of morphological criteria and 16S rRNA gene sequence similarity as Nostoc entophytum (with 99% similarity). The isolate was tentatively designated N. entophytum ISC32. The phylogenetic affiliation of the isolates was determined on the basis of their 16S rRNA gene sequence. The maximum amount of Cd(II) adsorbed by strain ISC32 was 302.91 mg g(-1) from an initial exposure to a solution with a Cd(II) concentration of 150 mg l(-1). The cadmium uptake by metabolically active cells of cyanobacterial strain N. entophytum ISC32, retained in a clinostat for 6 days to simulate microgravity conditions, was examined and compared with that of ground control samples. N. entophytum ISC32 under the influence of microgravity was able to take up cadmium at amounts up to 29% higher than those of controls. The activity of antioxidant enzymes including catalase and peroxidase was increased in strain ISC32 exposed to microgravity conditions in a clinostat for 6 days, as catalase activity of the cells was more than three times higher than that of controls. The activity of the peroxidase enzyme increased by 36% compared with that of the controls. Membrane lipid peroxidation was also increased in the cells retained under microgravity conditions, up to 2.89-fold higher than in non-treated cells. Images obtained using scanning electron microscopy showed that cyanobacterial cells form continuous filaments which are drawn at certain levels, while the cells placed in a clinostat appeared as round-shaped, accumulated together and distorted to some extent.


Assuntos
Antioxidantes/metabolismo , Transporte Biológico/fisiologia , Cádmio/metabolismo , Poluentes Ambientais/metabolismo , Nostoc/metabolismo , Biodegradação Ambiental , Biomassa , Catalase/metabolismo , Citoesqueleto/metabolismo , Peroxidação de Lipídeos/fisiologia , Lipídeos de Membrana/metabolismo , Microscopia Eletrônica de Varredura , Nostoc/genética , Peroxidase/metabolismo , RNA Ribossômico 16S/genética , Ausência de Peso
17.
J Virol ; 89(24): 12441-56, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26423955

RESUMO

UNLABELLED: Positive-strand RNA [(+) RNA] viruses remodel cellular membranes to facilitate virus replication and assembly. In the case of turnip mosaic virus (TuMV), the viral membrane protein 6K2 plays an essential role in endomembrane alterations. Although 6K2-induced membrane dynamics have been widely studied by confocal microscopy, the ultrastructure of this remodeling has not been extensively examined. In this study, we investigated the formation of TuMV-induced membrane changes by chemical fixation and high-pressure freezing/freeze substitution (HPF/FS) for transmission electron microscopy at different times of infection. We observed the formation of convoluted membranes connected to rough endoplasmic reticulum (rER) early in the infection process, followed by the production of single-membrane vesicle-like (SMVL) structures at the midstage of infection. Both SMVL and double-membrane vesicle-like structures with electron-dense cores, as well as electron-dense bodies, were found late in the infection process. Immunogold labeling results showed that the vesicle-like structures were 6K2 tagged and suggested that only the SMVL structures were viral RNA replication sites. Electron tomography (ET) was used to regenerate a three-dimensional model of these vesicle-like structures, which showed that they were, in fact, tubules. Late in infection, we observed filamentous particle bundles associated with electron-dense bodies, which suggests that these are sites for viral particle assembly. In addition, TuMV particles were observed to accumulate in the central vacuole as membrane-associated linear arrays. Our work thus unravels the sequential appearance of distinct TuMV-induced membrane structures for viral RNA replication, viral particle assembly, and accumulation. IMPORTANCE: Positive-strand RNA viruses remodel cellular membranes for different stages of the infection process, such as protein translation and processing, viral RNA synthesis, particle assembly, and virus transmission. The ultrastructure of turnip mosaic virus (TuMV)-induced membrane remodeling was investigated over several days of infection. The first change that was observed involved endoplasmic reticulum-connected convoluted membrane accumulation. This was followed by the formation of single-membrane tubules, which were shown to be viral RNA replication sites. Later in the infection process, double-membrane tubular structures were observed and were associated with viral particle bundles. In addition, TuMV particles were observed to accumulate in the central vacuole as membrane-associated linear arrays. This work thus unravels the sequential appearance of distinct TuMV-induced membrane structures for viral RNA replication, viral particle assembly, and accumulation.


Assuntos
Retículo Endoplasmático , Membranas Intracelulares , Nicotiana , Tymovirus , Vacúolos , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Membranas Intracelulares/virologia , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia , Tymovirus/genética , Tymovirus/metabolismo , Tymovirus/ultraestrutura , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Vacúolos/ultraestrutura , Vacúolos/virologia
18.
J Am Chem Soc ; 137(19): 6124-7, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25915443

RESUMO

Cellulose nanocrystals (CNCs), derived from cellulose, provide us with an opportunity to devise more sustainable solutions to current technological challenges. Enantioselective catalysis, especially heterogeneous, is the preferred method for the synthesis of pure chiral molecules in the fine chemical industries. Cellulose has been long sought as a chiral inducer in enantioselective catalysis. We report herein an unprecedentedly high enantiomeric excess (ee) for Pd patches deposited onto CNCs used as catalysts for the hydrogenation of prochiral ketones in water at room temperature and 4 bar H2. Our system, where CNCs acted as support and sole chiral source, achieved an ee of 65% with 100% conversions. Cryo-electron microscopy, high-resolution transmission electron microscopy, and tomography were used for the first time to study the 3D structure of a metal functionalized CNC hybrid. It established the presence of sub-nanometer-thick Pd patches at the surface of CNCs and provided insight into the chiral induction mechanism.


Assuntos
Celulose/química , Cetonas/química , Nanopartículas/química , Paládio/química , Catálise , Hidrogenação , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Estereoisomerismo
19.
Am J Physiol Gastrointest Liver Physiol ; 308(4): G251-61, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25501544

RESUMO

Hemojuvelin (Hjv) is a membrane protein that controls body iron metabolism by enhancing signaling to hepcidin. Hjv mutations cause juvenile hemochromatosis, a disease of systemic iron overload. Excessive iron accumulation in the liver progressively leads to inflammation and disease, such as fibrosis, cirrhosis, or hepatocellular cancer. Fatty liver (steatosis) may also progress to inflammation (steatohepatitis) and liver disease, and iron is considered as pathogenic cofactor. The aim of this study was to investigate the pathological implications of parenchymal iron overload due to Hjv ablation in the fatty liver. Wild-type (WT) and Hjv(-/-) mice on C57BL/6 background were fed a standard chow, a high-fat diet (HFD), or a HFD supplemented with 2% carbonyl iron (HFD+Fe) for 12 wk. The animals were analyzed for iron and lipid metabolism. As expected, all Hjv(-/-) mice manifested higher serum and hepatic iron and diminished hepcidin levels compared with WT controls. The HFD reduced iron indexes and promoted liver steatosis in both WT and Hjv(-/-) mice. Notably, steatosis was attenuated in Hjv(-/-) mice on the HFD+Fe regimen. Hjv(-/-) animals gained less body weight and exhibited reduced serum glucose and cholesterol levels. Histological and ultrastructural analysis revealed absence of iron-induced inflammation or liver fibrosis despite early signs of liver injury (expression of α-smooth muscle actin). We conclude that parenchymal hepatic iron overload does not suffice to trigger progression of liver steatosis to steatohepatitis or fibrosis in C57BL/6 mice.


Assuntos
Dieta Hiperlipídica , Fígado Gorduroso/complicações , Hemocromatose/congênito , Ferro/metabolismo , Cirrose Hepática/etiologia , Fígado/metabolismo , Proteínas de Membrana/deficiência , Actinas/metabolismo , Animais , Glicemia/metabolismo , Colesterol/sangue , Modelos Animais de Doenças , Progressão da Doença , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/prevenção & controle , Proteínas Ligadas por GPI , Genótipo , Hemocromatose/complicações , Hemocromatose/genética , Hemocromatose/metabolismo , Proteína da Hemocromatose , Hepcidinas/metabolismo , Ferro/sangue , Compostos de Ferro/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fatores de Risco , Fatores de Tempo , Aumento de Peso
20.
Microbiology (Reading) ; 161(Pt 3): 662-73, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25575545

RESUMO

The present study was conducted to determine the potential of five cyanobacteria strains isolated from aquatic zones to induce lipid production. The phylogenetic affiliation of the isolates was determined by 16S rRNA gene sequencing. Amongst the isolates, an efficient cyanobacterium, Synechococcus sp. HS01 showing maximal biomass and lipid productivity, was selected for further studies. In order to compare lipid productivity, the HS01 strain was grown in different media to screen potential significant culture ingredients and to evaluate mixotrophic cultivation. Mixotrophic cultivation of the strain using ostrich oil as a carbon source resulted in the best lipid productivity. GC analysis of fatty acid methyl esters of the selected cyanobacterial strain grown in media supplemented with ostrich oil showed a high content of C16 (palmitoleic acid and palmitic acid) and C18 (linoleic acid, oleic acid and linolenic acid) fatty acids of 42.7 and 42.8 %, respectively. Transmission electron micrographs showed that the HS01 cells exhibited an elongated rod-shaped appearance, either isolated, paired, linearly connected or in small clusters. According to initial experiments, ostrich oil, NaNO3 and NaCl were recognized as potential essential nutrients and selected for optimization of media with the goal of maximizing lipid productivity. A culture optimization technique using the response surface method demonstrated a maximum lipid productivity of 56.5 mg l(-1) day(-1). This value was 2.82-fold higher than that for the control, and was achieved in medium containing 1.12 g l(-1) NaNO3, 1 % (v/v) ostrich oil and 0.09 % (w/v) NaCl.


Assuntos
Lagos/microbiologia , Lipídeos/biossíntese , Synechococcus/crescimento & desenvolvimento , Synechococcus/metabolismo , Lipídeos/química , Filogenia , Synechococcus/genética , Synechococcus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA