Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(14): e2309289, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38326078

RESUMO

Organoids are becoming increasingly relevant in biology and medicine for their physiological complexity and accuracy in modeling human disease. To fully assess their biological profile while preserving their spatial information, spatiotemporal imaging tools are warranted. While previously developed imaging techniques, such as four-dimensional (4D) live imaging and light-sheet imaging have yielded important clinical insights, these technologies lack the combination of cyclic and multiplexed analysis. To address these challenges, bioorthogonal click chemistry is applied to display the first demonstration of multiplexed cyclic imaging of live and fixed patient-derived glioblastoma tumor organoids. This technology exploits bioorthogonal click chemistry to quench fluorescent signals from the surface and intracellular of labeled cells across multiple cycles, allowing for more accurate and efficient molecular profiling of their complex phenotypes. Herein, the versatility of this technology is demonstrated for the screening of glioblastoma markers in patient-derived human glioblastoma organoids while conserving their viability. It is anticipated that the findings and applications of this work can be broadly translated into investigating physiological developments in other organoid systems.


Assuntos
Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Diagnóstico por Imagem , Organoides/patologia
2.
J Extracell Biol ; 2(6): e89, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38938916

RESUMO

The use of mesenchymal stem cells (MSCs) in human and veterinary clinical applications has become a subject of increasing importance due to their roles in immunomodulation and regenerative processes. MSCs are especially relevant in equine medicine because they may have the ability to treat prevalent musculoskeletal disorders, among other conditions. However, recent evidence suggests that the components secreted by MSCs, particularly extracellular vesicles (EVs), are responsible for these properties. EVs contain proteins and nucleic acids, which possess an active role in intercellular communication and can be used as therapeutics. However, because the intersection of equine veterinary medicine with EVs remains a relatively new field, there is a demand to identify biomarkers that can discern and enrich for therapeutic EVs, progressing their clinical efficacy. In this study, we identified and characterized 84 miRNAs, between three equine donors involved in immunomodulation in cell and EV subjects. We discovered distinct groups of shared miRNAs, like miR-21-5p and miR-451a, that are abundant and enriched between the donors' EVs, respectively. By mapping and comparing the MSC-EV miRNA expression, we discovered many pathways that are involved in immunomodulation and tissue regenerative processes related to equine clinical applications. Therefore, the miRNAs highlighted in this article can be used as valuable biomarkers for screening MSC-derived EVs for potential equine therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA