Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Blood ; 140(6): 630-643, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35486832

RESUMO

Altered metabolism is a hallmark of both cell division and cancer. Chronic lymphocytic leukemia (CLL) cells circulate between peripheral blood (PB) and lymph nodes (LNs), where they receive proliferative and prosurvival signals from surrounding cells. However, insight into the metabolism of LN CLL and how this may relate to therapeutic response is lacking. To obtain insight into CLL LN metabolism, we applied a 2-tiered strategy. First, we sampled PB from 8 patients at baseline and after 3-month ibrutinib (IBR) treatment, which forces egress of CLL cells from LNs. Second, we applied in vitro B-cell receptor (BCR) or CD40 stimulation to mimic the LN microenvironment and performed metabolomic and transcriptomic analyses. The combined analyses indicated prominent changes in purine, glucose, and glutamate metabolism occurring in the LNs. CD40 signaling mostly regulated amino acid metabolism, tricarboxylic acid cycle (TCA), and energy production. BCR signaling preferably engaged glucose and glycerol metabolism and several biosynthesis routes. Pathway analyses demonstrated opposite effects of in vitro stimulation vs IBR treatment. In agreement, the metabolic regulator MYC and its target genes were induced after BCR/CD40 stimulation and suppressed by IBR. Next, 13C fluxomics performed on CD40/BCR-stimulated cells confirmed a strong contribution of glutamine as fuel for the TCA cycle, whereas glucose was mainly converted into lactate and ribose-5-phosphate. Finally, inhibition of glutamine import with V9302 attenuated CD40/BCR-induced resistance to venetoclax. Together, these data provide insight into crucial metabolic changes driven by the CLL LN microenvironment. The prominent use of amino acids as fuel for the TCA cycle suggests new therapeutic vulnerabilities.


Assuntos
Leucemia Linfocítica Crônica de Células B , Antígenos CD40 , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Linfonodos/patologia , Receptores de Antígenos de Linfócitos B/metabolismo , Microambiente Tumoral
2.
Blood ; 138(17): 1570-1582, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34424958

RESUMO

Glycosylation of the surface immunoglobulin (Ig) variable region is a remarkable follicular lymphoma-associated feature rarely seen in normal B cells. Here, we define a subset of diffuse large B-cell lymphomas (DLBCLs) that acquire N-glycosylation sites selectively in the Ig complementarity-determining regions (CDRs) of the antigen-binding sites. Mass spectrometry and X-ray crystallography demonstrate how the inserted glycans are stalled at oligomannose-type structures because they are buried in the CDR loops. Acquisition of sites occurs in ∼50% of germinal-center B-cell-like DLBCL (GCB-DLBCL), mainly of the genetic EZB subtype, irrespective of IGHV-D-J use. This markedly contrasts with the activated B-cell-like DLBCL Ig, which rarely has sites in the CDR and does not seem to acquire oligomannose-type structures. Acquisition of CDR-located acceptor sites associates with mutations of epigenetic regulators and BCL2 translocations, indicating an origin shared with follicular lymphoma. Within the EZB subtype, these sites are associated with more rapid disease progression and with significant gene set enrichment of the B-cell receptor, PI3K/AKT/MTORC1 pathway, glucose metabolism, and MYC signaling pathways, particularly in the fraction devoid of MYC translocations. The oligomannose-type glycans on the lymphoma cells interact with the candidate lectin dendritic cell-specific intercellular adhesion molecule 3 grabbing non-integrin (DC-SIGN), mediating low-level signals, and lectin-expressing cells form clusters with lymphoma cells. Both clustering and signaling are inhibited by antibodies specifically targeting the DC-SIGN carbohydrate recognition domain. Oligomannosylation of the tumor Ig is a posttranslational modification that readily identifies a distinct GCB-DLBCL category with more aggressive clinical behavior, and it could be a potential precise therapeutic target via antibody-mediated inhibition of the tumor Ig interaction with DC-SIGN-expressing M2-polarized macrophages.


Assuntos
Regiões Determinantes de Complementaridade/química , Linfoma Difuso de Grandes Células B/patologia , Polissacarídeos/análise , Sítios de Ligação , Moléculas de Adesão Celular/química , Glicosilação , Humanos , Lectinas Tipo C/química , Linfoma Difuso de Grandes Células B/química , Domínios e Motivos de Interação entre Proteínas , Receptores de Superfície Celular/química , Células Tumorais Cultivadas
3.
Blood ; 127(4): 449-57, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26491071

RESUMO

Antigenic stimulation via the B-cell receptor (BCR) is a major driver of the proliferation and survival of chronic lymphocytic leukemia (CLL) cells. However, the precise mechanisms by which BCR stimulation leads to accumulation of malignant cells remain incompletely understood. Here, we investigated the ability of BCR stimulation to increase messenger RNA (mRNA) translation, which can promote carcinogenesis by effects on both global mRNA translation and upregulated expression of specific oncoproteins. Re-analysis of gene expression profiles revealed striking upregulation of pathways linked to mRNA translation both in CLL cells derived from lymph nodes, the major site of antigen stimulation in vivo, and after BCR stimulation in vitro. Anti-IgM significantly increased mRNA translation in primary CLL cells, measured using bulk metabolic labeling and a novel flow cytometry assay to quantify responses at a single-cell level. These translational responses were suppressed by inhibitors of BTK (ibrutinib) and SYK (tamatinib). Anti-IgM-induced mRNA translation was associated with increased expression of translation initiation factors eIF4A and eIF4GI, and reduced expression of the eIF4A inhibitor, PDCD4. Anti-IgM also increased mRNA translation in normal blood B cells, but without clear modulatory effects on these factors. In addition, anti-IgM increased translation of mRNA-encoding MYC, a major driver of disease progression. mRNA translation is likely to be an important mediator of the growth-promoting effects of antigen stimulation acting, at least in part, via translational induction of MYC. Differences in mechanisms of translational regulation in CLL and normal B cells may provide opportunities for selective therapeutic attack.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/genética , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/genética , Receptores de Antígenos de Linfócitos B/imunologia , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Anticorpos Anti-Idiotípicos/imunologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Linhagem Celular Tumoral , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Piperidinas , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptores de Antígenos de Linfócitos B/genética , Quinase Syk , Células Tumorais Cultivadas
4.
Mol Cell Neurosci ; 46(1): 89-100, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20801220

RESUMO

The high frequency and malignancy of human glioblastomas has stimulated the search for potential therapeutic approaches. The control of the glioma cell proliferation in response to mitogenic signals is one of the most promising antitumoral strategies, and the main target of several therapies. Neurostatin, an O-acetylated derivative of the ganglioside GD1b, has potent antiproliferative activity over the in vitro and in vivo growth of glioma cells. The mechanism of its antitumoral action is the focus of the present study. Using a combined in vitro-in vivo approach, we observed that neurostatin arrested glioma proliferation by inhibiting the expression of cell cycle promoters (i.e. cyclins and CDKs) and promoting the expression of cell cycle inhibitors (i.e. p21 and p27). Neurostatin inhibits epidermal growth factor receptor (EGFR) signaling pathways, blocking the activation of the main promitogenic MAPKs and PI3K pathways. Neurostatin action not only interferes in the cell cycle progression, but also in the protection from apoptosis, and the generation of angiogenic and invasive responses. The antitumoral actions described here point to neurostatin as a novel and promising chemotherapeutic agent for glioma treatment.


Assuntos
Ciclo Celular/efeitos dos fármacos , Receptores ErbB/metabolismo , Glioma/tratamento farmacológico , Glioma/patologia , Glicoesfingolipídeos/farmacologia , Glicoesfingolipídeos/uso terapêutico , Animais , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Feminino , Glioma/fisiopatologia , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Transplante Heterólogo
5.
Cell Signal ; 96: 110358, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35597428

RESUMO

BTK inhibitors (BTKi) have dramatically improved outcomes for patients with chronic lymphocytic leukaemia (CLL) and some forms of B-cell lymphoma. However, new strategies are needed to enhance responses. Here we have performed a detailed analysis of the effects of BTKi on B-cell receptor (BCR)-induced signalling using primary malignant cells from CLL patients and B-lymphoma cell lines. Although BTK is considered as a key activator of PLCγ2, BTKi (ibrutinib and acalabrutinib) failed to fully inhibit calcium responses in CLL samples with strong BCR signalling capacity. This BTKi-resistant calcium signalling was sufficient to engage downstream calcium-dependent transcription and suppress CLL cell apoptosis and was entirely independent of BTK and not just its kinase activity as similar results were obtained using a BTK-degrading PROTAC. BTK-independent calcium signalling was also observed in two B-lymphoma cell lines where BTKi had little effect on the initial phase of the calcium response but did accelerate the subsequent decline in intracellular calcium. In contrast to BTKi, calcium responses were completely blocked by inhibition of SYK in CLL and lymphoma cells. Engagement of BTK-independent calcium responses was associated with BTK-independent phosphorylation of PLCγ2 on Y753 and Y759 in both CLL and lymphoma cells. Moreover, in CLL samples, inhibition of RAC, which can mediate BTK-independent activation of PLCγ2, cooperated with ibrutinib to suppress calcium responses. BTK-independent calcium signalling may limit the effectiveness of BTKi to suppress BCR signalling responses and our results suggest inhibition of SYK or dual inhibition of BTK and RAC as alternative strategies to strengthen pathway blockade.


Assuntos
Leucemia Linfocítica Crônica de Células B , Tirosina Quinase da Agamaglobulinemia , Cálcio/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Fosfolipase C gama , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptores de Antígenos de Linfócitos B/metabolismo
6.
Sci Rep ; 11(1): 11676, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083646

RESUMO

In follicular lymphoma (FL), surface immunoglobulin (sIg) carries mandatory N-glycosylation sites in the variable regions, inserted during somatic hypermutation. These glycosylation sites are tumor-specific, indicating a critical function in FL. Added glycan unexpectedly terminates at high mannose (Mann) and confers capability for sIg-mediated interaction with local macrophage-expressed DC-SIGN lectin resulting in low-level activation of upstream B-cell receptor signaling responses. Here we show that despite being of low-level, DC-SIGN induces a similar downstream transcriptional response to anti-IgM in primary FL cells, characterized by activation of pathways associated with B-cell survival, proliferation and cell-cell communication. Lectin binding was also able to engage post-transcriptional receptor cross-talk pathways since, like anti-IgM, DC-SIGN down-modulated cell surface expression of CXCR4. Importantly, pre-exposure of a FL-derived cell line expressing sIgM-Mann or primary FL cells to DC-SIGN, which does not block anti-IgM binding, reversibly paralyzed the subsequent Ca2+ response to anti-IgM. These novel findings indicate that modulation of sIg function occurs in FL via lectin binding to acquired mannoses. The B-cell receptor alternative engagement described here provides two advantages to lymphoma cells: (i) activation of signaling, which, albeit of low-level, is sufficient to trigger canonical lymphoma-promoting responses, and (ii) protection from exogenous antigen by paralyzing anti-IgM-induced signaling. Blockade of this alternative engagement could offer a new therapeutic strategy.


Assuntos
Moléculas de Adesão Celular/metabolismo , Lectinas Tipo C/metabolismo , Linfoma Folicular/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Cálcio/metabolismo , Sinalização do Cálcio , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glicosilação , Humanos , Imunoglobulina M/imunologia , Lectinas Tipo C/genética , Linfoma Folicular/genética , Linfoma Folicular/imunologia , Ligação Proteica , Receptores CXCR4/metabolismo , Receptores de Superfície Celular/genética
7.
Glia ; 58(3): 264-76, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19610094

RESUMO

Reactive glia formation is one of the hallmarks of damage to the CNS, but little information exists on the signals that direct its activation. Microglial cells are the main regulators of both innate and adaptative immune responses in the CNS. The proinflammatory cytokine IL-15 is involved in regulating the response of T and B cells, playing a key role in regulating nervous system inflammatory events. We have used a microglial culture model of inflammation induced by LPS and IFNgamma to evaluate the role of IL-15 in the proinflammatory response. Our results indicate that IL-15 is necessary for the reactive response, its deficiency (IL-15-/-) leading to the development of a defective proinflammatory response. Blockade of IL-15, both with blocking antibodies or with the ganglioside Neurostatin, inhibited the activation of the NFkappaB pathway, decreasing iNOS expression and NO production. Inhibiting IL-15 signaling also blocked the activation of the mitogen-activated protein kinase (MAPK) pathways ERK1/2 and p38. The major consequence of these inhibitory effects, analyzed using cytokine antibody arrays, was a severe decrease in the production of chemokines, cytokines and growth factors, like CCL17, CCL19, IL-12, or TIMP-1, that are essential for the development of the phenotypic changes of glial activation. In conclusion, activation of the IL-15 system seems a necessary step for the development of glial reactivity and the regulation of the physiology of glial cells. Modulating IL-15 activity opens the possibility of developing new strategies to control gliotic events upon inflammatory stimulation.


Assuntos
Encefalite/imunologia , Gliose/imunologia , Interleucina-15/metabolismo , Sistema de Sinalização das MAP Quinases/imunologia , NF-kappa B/metabolismo , Animais , Anticorpos Bloqueadores/farmacologia , Linhagem Celular , Células Cultivadas , Quimiocinas/metabolismo , Citocinas/metabolismo , Encefalite/fisiopatologia , Gliose/fisiopatologia , Glicoesfingolipídeos/farmacologia , Mediadores da Inflamação/farmacologia , Interferon gama/farmacologia , Interleucina-15/antagonistas & inibidores , Interleucina-15/genética , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/imunologia , Microglia/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Óxido Nítrico/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Explor Target Antitumor Ther ; 1: 131-152, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32924028

RESUMO

Chronic lymphocytic leukemia is a common form of leukemia and is dependent on growth-promoting signaling via the B-cell receptor. The Bruton tyrosine kinase (BTK) is an important mediator of B-cell receptor signaling and the irreversible BTK inhibitor ibrutinib can trigger dramatic clinical responses in treated patients. However, emergence of resistance and toxicity are major limitations which lead to treatment discontinuation. There remains, therefore, a clear need for new therapeutic options. In this review, we discuss recent progress in the development of BTK-targeted proteolysis targeting chimeras (PROTACs) describing how such agents may provide advantages over ibrutinib and highlighting features of PROTACs that are important for the development of effective BTK degrading agents. Overall, PROTACs appear to be an exciting new approach to target BTK. However, development is at a very early stage and considerable progress is required to refine these agents and optimize their drug-like properties before progression to clinical testing.

10.
Clin Cancer Res ; 26(7): 1700-1711, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31831562

RESUMO

PURPOSE: PI3K signaling is a common feature of B-cell neoplasms, including chronic lymphocytic leukemia (CLL) and diffuse large B-cell lymphoma (DLBCL), and PI3K inhibitors have been introduced into the clinic. However, there remains a clear need to develop new strategies to target PI3K signaling. PI3K activity is countered by Src homology domain 2-containing inositol-5'-phosphatase 1 (SHIP1) and, here, we have characterized the activity of a novel SHIP1 activator, AQX-435, in preclinical models of B-cell malignancies. EXPERIMENTAL DESIGN: In vitro activity of AQX-435 was evaluated using primary CLL cells and DLBCL-derived cell lines. In vivo activity of AQX-435, alone or in combination with the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, was assessed using DLBCL cell line and patient-derived xenograft models. RESULTS: Pharmacologic activation of SHIP1 using AQX-435 was sufficient to inhibit anti-IgM-induced PI3K-mediated signaling, including induction of AKT phosphorylation and MYC expression, without effects on upstream SYK phosphorylation. AQX-435 also cooperated with the BTK inhibitor ibrutinib to enhance inhibition of anti-IgM-induced AKT phosphorylation. AQX-435 induced caspase-dependent apoptosis of CLL cells preferentially as compared with normal B cells, and overcame in vitro survival-promoting effects of microenvironmental stimuli. Finally, AQX-435 reduced AKT phosphorylation and growth of DLBCL in vivo and cooperated with ibrutinib for tumor growth inhibition. CONCLUSIONS: Our results using AQX-435 demonstrate that SHIP1 activation may be an effective novel therapeutic strategy for treatment of B-cell neoplasms, alone or in combination with ibrutinib.


Assuntos
Antineoplásicos/farmacologia , Ativadores de Enzimas/farmacologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Sesquiterpenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Camundongos Endogâmicos NOD , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Oncotarget ; 7(46): 74807-74819, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27579538

RESUMO

Increased mRNA translation drives carcinogenesis and is an attractive target for the development of new anti-cancer drugs. In this work, we investigated effects of phenethylisothiocyanate (PEITC), a phytochemical with chemopreventive and anti-cancer activity, on mRNA translation. PEITC rapidly inhibited global mRNA translation in human breast cancer-derived MCF7 cells and mouse embryonic fibroblasts (MEFs). In addition to the known inhibitory effects of PEITC on mTORC1 activity, we demonstrate that PEITC increased eIF2α phosphorylation. PEITC also increased formation of stress granules which are typically associated with eIF2α phosphorylation and accumulation of translationally stalled mRNAs. Analysis of genetically modified MEFs demonstrated that optimal inhibition of global mRNA translation by PEITC was dependent on eIF2α phosphorylation, but not mTORC1 inhibition. We extended this study into primary leukemic B cells derived from patients with chronic lymphocytic leukaemia (CLL). CLL cells were stimulated in vitro with anti-IgM to mimic binding of antigen, a major driver of this leukemia. In CLL cells, PEITC increased eIF2α phosphorylation, inhibited anti-IgM-induced mTORC1 activation and decreased both basal and anti-IgM-induced global mRNA translation. PEITC also inhibited transcription and translation of MYC mRNA and accumulation of the MYC oncoprotein, in anti-IgM-stimulated cells. Moreover, treatment of CLL cells with PEITC and the BTK kinase inhibitor ibrutinib decreased anti-IgM-induced translation and induced cell death to a greater extent than either agent alone. Therefore, PEITC can inhibit both global and mRNA specific translation (including MYC) via effects on multiple regulatory pathways. Inhibition of mRNA translation may contribute to the chemopreventive and anti-cancer effects of PEITC.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Isotiocianatos/farmacologia , Leucemia/genética , Leucemia/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Anticorpos Anti-Idiotípicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Genes myc , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Células MCF-7 , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Estresse Fisiológico , Transcrição Gênica/efeitos dos fármacos
12.
Mol Biol Cell ; 22(12): 1960-70, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21508317

RESUMO

The impact of inflammation is crucial for the regulation of the biology of neural stem cells (NSCs). Interleukin-15 (IL-15) appears as a likely candidate for regulating neurogenesis, based on its well-known mitogenic properties. We show here that NSCs of the subventricular zone (SVZ) express IL-15, which regulates NSC proliferation, as evidenced by the study of IL-15-/- mice and the effects of acute IL-15 administration, coupled to 5-bromo-2'-deoxyuridine/5-ethynyl-2'-deoxyuridine dual-pulse labeling. Moreover, IL-15 regulates NSC differentiation, its deficiency leading to an impaired generation of neuroblasts in the SVZ-rostral migratory stream axis, recoverable through the action of exogenous IL-15. IL-15 expressed in cultured NSCs is linked to self-renewal, proliferation, and differentiation. IL-15-/- NSCs presented deficient proliferation and self-renewal, as evidenced in proliferation and colony-forming assays and the analysis of cell cycle-regulatory proteins. Moreover, IL-15-deficient NSCs were more prone to differentiate than wild-type NSCs, not affecting the cell population balance. Lack of IL-15 led to a defective activation of the JAK/STAT and ERK pathways, key for the regulation of proliferation and differentiation of NSCs. The results show that IL-15 is a key regulator of neurogenesis in the adult and is essential to understanding diseases with an inflammatory component.


Assuntos
Proliferação de Células , Interleucina-15/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Proteínas de Ciclo Celular/análise , Diferenciação Celular , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Janus Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Neurogênese , Fatores de Transcrição STAT/metabolismo
13.
Clin Med Insights Oncol ; 5: 265-314, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22084619

RESUMO

Treated glioblastoma patients survive from 6 to 14 months. In the first part of this review, we describe glioma origins, cancer stem cells and the genomic alterations that generate dysregulated cell division, with enhanced proliferation and diverse response to radiation and chemotherapy. We review the pathways that mediate tumour cell proliferation, neo-angiogenesis, tumor cell invasion, as well as necrotic and apoptotic cell death. Then, we examine the ability of gliomas to evade and suppress the host immune system, exhibited at the levels of antigen recognition and immune activation, limiting the effective signaling between glioma and host immune cells.The second part of the review presents current therapies and their drawbacks. This is followed by a summary of the work of our laboratory during the past 20 years, on oligosaccharide and glycosphingolipid inhibitors of astroblast and astrocytoma division. Neurostatins, the O-acetylated forms of gangliosides GD1b and GT1b naturally present in mammalian brain, are cytostatic for normal astroblasts, but cytotoxic for rat C6 glioma cells and human astrocytoma grades III and IV, with ID50 values ranging from 200 to 450 nM. The inhibitors do not affect neurons or fibroblasts up to concentrations of 4 µM or higher.At least four different neurostatin-activated, cell-mediated antitumoral processes, lead to tumor destruction: (i) inhibition of tumor neovascularization; (ii) activation of microglia; (iii) activation of natural killer (NK) cells; (iv) activation of cytotoxic lymphocytes (CTL). The enhanced antigenicity of neurostatin-treated glioma cells, could be related to their increased expression of connexin 43. Because neurostatins and their analogues show specific activity and no toxicity for normal cells, a clinical trial would be the logical next step.

14.
Neuro Oncol ; 12(11): 1135-46, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20615925

RESUMO

In spite of their low incidence, central nervous system tumors have elevated morbidity and mortality, being responsible for 2.3% of total cancer deaths. The ganglioside O-acetylated GD1b (O-Ac GD1b; neurostatin), present in the mammalian brain, and the semi-synthetic O-butyrylated GD1b (O-But GD1b) are potent glioma proliferation inhibitors, appearing as possible candidates for the treatment of nervous system tumors. Tumoral cell division inhibitory activity in culture correlated with growth inhibition of glioma xenotransplants in Foxn1(nu) nude mice and intracranial glioma allotransplants. Both O-Ac GD1b and O-But GD1b inhibited in vivo cell proliferation, induced cell cycle arrest, and potentiated immune cell response to the tumor. Furthermore, the increased stability of the butyrylated compound (O-But GD1b) enhanced its activity with respect to the acetylated ganglioside (neurostatin). These results are the first report of the antitumoral activity of neurostatin and a neurostatin-like compound in vivo and indicate that semi-synthetic O-acetylated and O-butyrylated gangliosides are potent antitumoral compounds that should be considered in strategies for brain tumor treatment.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Gangliosídeos/farmacologia , Glioma/tratamento farmacológico , Glicoesfingolipídeos/farmacologia , Acetilação , Animais , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Separação Celular , Citometria de Fluxo , Gangliosídeos/química , Gangliosídeos/metabolismo , Glicoesfingolipídeos/química , Glicoesfingolipídeos/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Nus , Ratos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Eur J Med Chem ; 45(5): 2034-43, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20153569

RESUMO

O-acetyl-ganglioside neurostatin, (Galbeta1-->3GalNAcbeta1-->4[9-O-Ac Neu5Acalpha2-->8Neu5Acalpha2-->3]Galbeta1-->4Glcbeta1-->1'-ceramide), is a natural GD1b-derived inhibitor of astroblast and astrocytoma division, whose structure and purification method limits its availability and stability. Therefore, we set-up the reaction to obtain O-acetylated and O-butyrylated neurostatin analogs by chemical synthesis, in order to improve its availability and stability. The compounds antitumoral activity was evaluated on U373MG and C6 glioblastoma cells, observing that the O-acetylation-dependent increase in the inhibitory activity was enhanced by O-butyrylation, with no further improvement with the multi-substitution, pointing to the initial conformational change and the stability change as responsible of its function. These results open the possibility for the application of the neurostatin-related compounds to in-vivo tumoral models.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Glioma/tratamento farmacológico , Glioma/patologia , Glicoesfingolipídeos/síntese química , Glicoesfingolipídeos/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glicoesfingolipídeos/química , Humanos , Ratos , Relação Estrutura-Atividade
16.
J Neuroimmunol ; 227(1-2): 87-92, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20638137

RESUMO

Neurodegenerative or autoimmune diseases are frequently regulated by chemokines and their receptors, controlling both glial activation and immune cell infiltration. CCL19 and CCL21 have been described to mediate crucial functions during CNS pathological states, regulating both immune cell traffic to the CNS and communication between glia and neurons. Here, we describe the expression pattern and cellular sources of CCR7, receptor of CCL19 and CCL21, in the normal mouse brain. Moreover, we found that CCR7 is upregulated in reactive astrocytes upon intracerebral LPS, regulating early glial reactivity through its ligands CCL19 and CCL21. Our results indicate that CCR7 is playing an important role for the intercellular communication during the inflammatory activation in the CNS.


Assuntos
Astrócitos/metabolismo , Astrócitos/patologia , Mediadores da Inflamação/fisiologia , Lipopolissacarídeos/toxicidade , Receptores CCR7/biossíntese , Receptores CCR7/genética , Regulação para Cima/imunologia , Animais , Comunicação Celular/genética , Comunicação Celular/imunologia , Células Cultivadas , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , Microglia/metabolismo , Microglia/patologia , Neurogênese/genética , Neurogênese/imunologia , Receptores CCR7/fisiologia
17.
Glia ; 56(5): 494-505, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18240307

RESUMO

Although reactive glia formation after neuronal degeneration or traumatic damage is one of the hallmarks of central nervous system (CNS) injury, we have little information on the signals that direct activation of resting glia. IL-15, a pro-inflammatory cytokine involved in regulating the response of T and B cells, may be also key for the regulation of early inflammatory events in the nervous system. IL-15 was expressed in the CNS, most abundantly in cerebellum and hippocampus, mainly in astrocytes and in some projection neurons. Using a rodent model of acute inflammatory injury [lipopolysaccharide (LPS) injection], we found enhanced expression of IL-15 in both reactive astroglia and microglia, soon after CNS injury. Blockade of IL-15 activity with an antibody to the cytokine, reversed activation of both glial types, suggesting that IL-15 has a major role in the generation of gliotic tissue and in the regulation of neuroimmune responses. Because IL-15 appears to modulate the inflammatory environment acutely generated after CNS injury, regulating IL-15 expression seems a clear antiinflammatory therapy to improve the outcome of neurodegenerative diseases and CNS trauma.


Assuntos
Sistema Nervoso Central/metabolismo , Encefalite/patologia , Interleucina-15/metabolismo , Neuroglia/fisiologia , Animais , Animais Recém-Nascidos , Anticorpos/farmacologia , Antígeno CD11b/metabolismo , Proliferação de Células , Células Cultivadas , Sistema Nervoso Central/citologia , Embrião de Mamíferos , Encefalite/induzido quimicamente , Ensaio de Imunoadsorção Enzimática/métodos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Interleucina-15/genética , Interleucina-15/imunologia , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Neurônios/fisiologia , Linfócitos T/fisiologia , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA