Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 288: 112396, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33823439

RESUMO

The presence of nonylphenol (NP) in the wastewater of the tank truck cleaning industry is a major concern because of its endocrine disruptive properties. In this paper, the use of ozone for degrading NP from tank truck cleaning wastewater was investigated by operating a pilot-scale biological wastewater treatment in combination with an ozonation unit. The impact of the added ozonation step on the removal of NP, soluble chemical oxygen demand (sCOD) and total organic carbon (TOC) was monitored over one year. sCOD and TOC removal were not significantly enhanced, but the NP peak concentrations in the effluent were significantly lower than those obtained after biological treatment only: a relatively low NP concentration was observed, even when peak loads were present in the influent of the pilot-scale biological wastewater treatment plant (influentbio). Contrariwise, the effluent of the sole biological treatment follows the peak load trends of the influentbio. During the ozonation period, the average NP concentration in the combined biological-ozone unit was 0.29 µg/L, compared to 1.89 µg/L for the effluent obtained after a sole biological treatment, resulting in an improved average removal efficiency of 32%.


Assuntos
Ozônio , Poluentes Químicos da Água , Veículos Automotores , Fenóis , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 810: 152110, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871692

RESUMO

The negative impact of agriculture on the quality of local water streams is widely recognized. Fertilizer residues not taken up by the crops leach into the drainage water and enter the surface water, resulting in eutrophication. Despite various initiatives to prevent this leaching by optimizing fertilizer schemes, the desired effect was not achieved, and the focus has shifted to denitrifying end-of-pipe techniques. Because the available area for installing such treatment systems is often limited, the development of intensified systems is a trend that has emerged recently. In this scope, the main goal of this study was therefore to investigate the suitability of a denitrifying Moving Bed Bioreactor (MBBR) as a low footprint technology, which can compete with conventional technologies. Two parallel lab-scale pilot MBBRs, one at low temperature and one at ambient temperature, were operated for 850 days to investigate the effectiveness and robustness under changing process parameters (hydraulic retention time (HRT), temperature, shutdown). Eventually, the system was scaled up to a full-scale installation and monitored during a full drainage season in the field. The pilot-scale MBBRs achieved removal efficiencies above 90% under optimal conditions (high C/N ratio and minimal HRT of 8 h), even while operating at low temperatures. The robustness of the system was also demonstrated by the immediate start-up after a shutdown period of 220 days. Overall, the full-scale MBBR treated 2910.1 m3 drainage water and removed approximately 59 kg NO3-N. Unfortunately, the average removal efficiency, i.e., 70%, was lower than the lab-scale system, but by intensifying the mixing in the MBBR, improved results were obtained. Nitrite accumulation was furthermore also prevented.


Assuntos
Reatores Biológicos , Nitratos , Agricultura , Biofilmes , Desnitrificação , Nitrogênio , Temperatura , Eliminação de Resíduos Líquidos
3.
Materials (Basel) ; 15(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36143781

RESUMO

The disposal of high-level radioactive waste (HLW) in deep stable geological formations is accepted at an international level to be the most promising option for its long-term management. The supercontainer concept is currently being considered as the Belgian reference design, wherein the waste will be stored in geological stable clay formations. The outer barrier of the supercontainer is the envelope, which should be made of a corrosion-resistant material as it will be in contact with the aggressive species leaching from the host rock (i.e., chloride) and diffusing through the cementitious barriers of the disposal system. Polarization measurements are carried out to study the pitting susceptibility and the uniform corrosion of possible candidate materials in chloride-rich concrete pore solutions, aerated by high-purity oxygen. The tests are carried out at a deep soil-representative temperature of 60 °C. All materials showed high pitting resistance in aerated concrete pore solutions and can withstand chloride concentrations up to 1 M. Regular 316L and LDX2304 stainless steel also showed good corrosion resistance and can serve as a more economical alternative. The pH of the used pore solutions did affect the measured corrosion rate irrespective of the alloying elements inside the steel grades.

4.
Chemosphere ; 267: 129276, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33341730

RESUMO

Nutrient enrichment in water bodies, and its detrimental consequences, are a well known and worldwide environmental problem. Agricultural activities are identified as an important source of diffuse losses of phosphate and nitrate because of the leaching out fertilizers from agricultural fields. This study encompasses the implementation of an end-of-pipe treatment by capturing phosphate from greenhouse effluent, using granular iron-coated sand (ICS) in an adsorption process. ICS is evaluated as a low-cost by-product because of its adsorption capacity and kinetics. The Langmuir isotherm was suitable for describing the adsorption thermodynamics. The adsorption capacity at an equilibrium concentration Ce of 25 mg PO4-P/L ranged between 1.85 and 3.07 mg PO4-P/g sorbent. Furthermore, both the pseudo-second-order model (R2 = 0.9823) and the Elovich model (R2 = 0.9803) showed a good fit with the kinetic data over the time range investigated, indicating that chemisorption is the rate-limiting step controlling the adsorption process. Higher adsorption capacities were observed at lower initial pH. Continuous bench-scale column experiments were performed to verify the adsorption potential of a filter bed under flow-through conditions, and the experimental data were fit to the Bohart-Adams model. Additionally, a discontinuous feeding regime of the column, resulting in intermediate resting periods, was introduced and showed an enhanced adsorption efficiency over a longer period. Finally, a pilot-scale experiment showed the potential of the ICS for the removal of phosphate from greenhouse effluent. The adsorption process, moreover, enables the recovery of phosphate via efficient desorption.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Horticultura , Concentração de Íons de Hidrogênio , Ferro , Cinética , Fosfatos , Areia , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA