RESUMO
Asphyxiated neonates often undergo therapeutic hypothermia (TH) to reduce morbidity and mortality. Since both perinatal asphyxia (PA) and TH influence physiology, altered pharmacokinetics (PK) and pharmacodynamics (PD) are expected. Given that TH is the standard of care for PA with moderate to severe hypoxic-ischemic encephalopathy, disentangling the effect of PA versus TH on PK/PD is not possible in clinical settings. However, animal models can provide insights into this matter. The (neonatal) Göttingen Minipig, the recommended strain for nonclinical drug development, was selected as translational model. Four drugs-midazolam (MDZ), fentanyl (FNT), phenobarbital (PHB), and topiramate (TPM)-were intravenously administered under four conditions: control (C), therapeutic hypothermia (TH), hypoxia (H), and hypoxia plus TH (H+TH). Each group included six healthy male neonatal Göttingen Minipigs anesthetized for 24 hours. Blood samples were drawn at 0 (predose) and 0.5, 2, 2.5, 3, 4, 4.5, 6, 8, 12, and 24 hours post drug administration. Drug plasma concentrations were determined using validated bioanalytical assays. The PK parameters were estimated through compartmental and noncompartmental PK analysis. The study showed a statistically significant decrease in FNT clearance (CL; 66% decrease), with an approximately threefold longer half-life (t1/2) in the TH group. The H+TH group showed a 17% reduction in FNT CL, with a 62% longer t1/2 compared with the C group; however, it was not statistically significant. Although not statistically significant, trends toward lower CL and longer t1/2 were observed in the TH and H+TH groups for MDZ and PHB. Additionally, TPM demonstrated a 28% decrease in CL in the H group compared with controls. SIGNIFICANCE STATEMENT: The overarching goal of this study using the neonatal Göttingen Minipig model was to disentangle the effects of systemic hypoxia and TH on PK using four model drugs. Such insights can subsequently be used to inform and develop a physiologically based pharmacokinetic model, which is useful for drug exposure prediction in human neonates.
Assuntos
Animais Recém-Nascidos , Asfixia Neonatal , Hipotermia Induzida , Midazolam , Porco Miniatura , Animais , Suínos , Hipotermia Induzida/métodos , Asfixia Neonatal/terapia , Asfixia Neonatal/tratamento farmacológico , Masculino , Midazolam/farmacocinética , Fenobarbital/farmacocinética , Fentanila/farmacocinética , Modelos Animais de Doenças , Recém-Nascido , Hipóxia-Isquemia Encefálica/terapia , Hipóxia-Isquemia Encefálica/metabolismo , HumanosRESUMO
During 2020, The European Chemicals Agency (ECHA) began evaluating the OECD Test Guideline 443: Extended One Generation Reproductive Toxicity Study (EOGRTS) to analyze specific aspects related to study design, conduct and toxicological findings. A significant outcome of this ECHA evaluation focused on adequate dose level selection. Subsequently, ECHA published recommendations for DART studies, however, these recommendations seemingly do not align with the principles of the 3Rs, animal welfare or human safety goals, specifically, regarding three aspects. First, the requirement to segregate testing for sexual function and fertility from the ability to produce normally developing offspring increases the risk of inadequate identification of postnatal hazards for development and sexual function and fertility, therefore failing human health protection goals. Second, the current ECHA high-dose level setting recommendations for EOGRTS exceed the MTD (Maximum Tolerated Dose), and therefore compromise the interpretation of the biological response relative to the intrinsic effect of the chemical under evaluation. Third, the combination of these aspects will result in an increase in the number of animals tested, increasing animal welfare concerns. This paper reflects the consensus of subject matter experts, professional, and scientific societies who have authored and signed on to this statement. The signatories encourage ECHA to adopt a revised science-driven approach to the dose selection criteria that strikes a balance between regulatory vigilance and scientific pragmatism.
Assuntos
Relação Dose-Resposta a Droga , Reprodução , Testes de Toxicidade , Animais , Reprodução/efeitos dos fármacos , Testes de Toxicidade/métodos , Testes de Toxicidade/normas , Humanos , Organização para a Cooperação e Desenvolvimento Econômico , Bem-Estar do Animal , Feminino , Medição de Risco , Guias como Assunto , Substâncias Perigosas/toxicidadeRESUMO
Intrauterine growth restriction (IUGR) is frequently observed in pig production, especially when using highly prolific sows. IUGR piglets are born with low body weight and shape indicative of differences in organ growth. Insufficient uteroplacental nutrient transfer to the fetuses is the leading cause of growth restriction in the pig. Supplementing the sow's gestation diet with arginine and/or glutamine improves placenta growth and functionality and consequently is able to reduce IUGR incidence. IUGR piglets are at higher risk of dying preweaning and face higher morbidity than their normal-weight littermates. A high level of surveillance during farrowing and individual nutrient supplementation can reduce the mortality rates. Still, these do not reverse the long-term consequences of IUGR, which are induced by persistent structural deficits in different organs. Dietary interventions peri-weaning can optimize performance but these are less effective in combating the metabolic changes that occurred in IUGR, which affect reproductive performance later in life. IUGR piglets share many similarities with IUGR infants, such as a poorer outcome of males. Using the IUGR piglet as an animal model to further explore the structural and molecular basis of the long-term consequences of IUGR and the potential sex bias could aid in fully understanding the impact of prenatal undernutrition and finding solutions for both species and sexes.
Assuntos
Retardo do Crescimento Fetal , Desnutrição , Humanos , Gravidez , Masculino , Animais , Suínos , Feminino , Peso ao Nascer , Dieta/veterinária , PlacentaRESUMO
Intestinal development is compromised in low birth weight (LBW) pigs, negatively impacting their growth, health, and resilience. We investigated the molecular mechanisms of the altered intestinal maturation observed in neonatal and juvenile LBW female piglets by comparing the changes in intestinal morphology, gene expression, and methylation in LBW versus normal birth weight (NBW) female piglets. A total of 16 LBW/NBW sibling pairs were sacrificed at 0 hours, 8 hours, 10 days, and 8 weeks of age. The gastrointestinal tract was weighed, measured, and the small intestine was sampled for histomorphology, gene expression, and methylation analyses. Impaired intestinal development, with shorter villi and shallower crypts, was observed in LBW female piglets. The expression of intestinal development markers (ALPI and OLFM) rapidly peaked after birth in NBW but not in LBW female piglets. The lower expression of genes involved in nutrient digestion (ANPEP and SI) and barrier function (OCLN and CLDN4) in LBW, together with their delayed development of intestinal villi and crypts could help to explain the compromised health and growth potential of LBW female piglets. The changes in methylation observed in LBW in key regulators of intestinal development (OLFM4 and FZD5) suggest long-term effects of BW on intestinal gene expression, development, and function. Accordingly, experimental demethylation induced in IPEC-J2 cells led to increased expression of intestinal genes (MGA, DPP4, and GLUT2). Overall, we have identified the alterations in transcription or epigenetic marking at a number of genes critical to intestinal development, which may contribute to both the short- and long-term failure of LBW female piglets to thrive.
Assuntos
Expressão Gênica/fisiologia , Recém-Nascido de Baixo Peso/fisiologia , Intestino Delgado/metabolismo , Intestinos/crescimento & desenvolvimento , Animais , Peso ao Nascer/fisiologia , Epigênese Genética/genética , Epigênese Genética/fisiologia , Intestino Delgado/crescimento & desenvolvimento , Sus scrofa/fisiologia , SuínosRESUMO
In drug development, nonclinical safety assessment is pivotal for human risk assessment and support of clinical development. Selecting the relevant/appropriate animal species for toxicity testing increases the likelihood of detecting potential effects in humans, and although recent regulatory guidelines state the need to justify or dis-qualify animal species for toxicity testing, individual companies have developed decision-processes most appropriate for their molecules, experience and 3Rs policies. These generally revolve around similarity of metabolic profiles between toxicology species/humans and relevant pharmacological activity in at least one species for New Chemical Entities (NCEs), whilst for large molecules (biologics) the key aspect is similarity/presence of the intended human target epitope. To explore current industry practice, a questionnaire was developed to capture relevant information around process, documentation and tools/factors used for species selection. Collated results from 14 companies (Contract Research Organisations and pharmaceutical companies) are presented, along with some case-examples or over-riding principles from individual companies. As the process and justification of species selection is expected to be a topic for continued emphasis, this information could be adapted towards a harmonized approach or best practice for industry consideration.
Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Indústria Farmacêutica/métodos , Modelos Animais , Testes de Toxicidade/métodos , Produtos Biológicos/toxicidade , Indústria Farmacêutica/normas , Especificidade da Espécie , Testes de Toxicidade/normasRESUMO
The zebrafish (Danio rerio) embryo is gaining interest as a bridging tool between in-vitro and in-vivo developmental toxicity studies. However, cytochrome P450 (CYP)-mediated drug metabolism in this model is still under debate. Therefore, we investigated the potential of zebrafish embryos and larvae to bioactivate two known anti-epileptics, carbamazepine (CBZ) and phenytoin (PHE), to carbamazepine-10,11-epoxide (E-CBZ) and 5-(4-hydroxyphenyl)-5-phenylhydantoin (HPPH), respectively. First, zebrafish were exposed to CBZ, PHE, E-CBZ and HPPH from 5»- to 120-h post fertilization (hpf) and morphologically evaluated. Second, the formations of E-CBZ and HPPH were assessed in culture medium and in whole-embryo extracts at different time points by targeted LC-MS. Finally, E-CBZ and HPPH formation was also assessed in adult zebrafish liver microsomes and compared with those of human, rat, and rabbit. The present study showed teratogenic effects for CBZ and PHE, but not for E-CBZ and HPPH. No HPPH was detected during organogenesis and E-CBZ was only formed at the end of organogenesis. E-CBZ and HPPH formation was also very low-to-negligible in adult zebrafish compared with the mammalian species. As such, other metabolic pathways than those of mammals are involved in the bioactivation of CBZ and PHE, or, these anti-epileptics are teratogens and do not require bioactivation in the zebrafish.
Assuntos
Anticonvulsivantes/toxicidade , Biotransformação , Embrião não Mamífero/patologia , Desenvolvimento Embrionário , Larva/crescimento & desenvolvimento , Microssomos Hepáticos/patologia , Organogênese , Animais , Embrião não Mamífero/efeitos dos fármacos , Humanos , Larva/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Coelhos , Ratos , Ratos Sprague-Dawley , Teratogênicos/toxicidade , Peixe-ZebraRESUMO
Unpredicted human safety events in clinical trials for new drugs are costly in terms of human health and money. The drug discovery industry attempts to minimize those events with diligent preclinical safety testing. Current standard practices are good at preventing toxic compounds from being tested in the clinic; however, false negative preclinical toxicity results are still a reality. Continual improvement must be pursued in the preclinical realm. Higher-quality therapies can be brought forward with more information about potential toxicities and associated mechanisms. The zebrafish model is a bridge between in vitro assays and mammalian in vivo studies. This model is powerful in its breadth of application and tractability for research. In the past two decades, our understanding of disease biology and drug toxicity has grown significantly owing to thousands of studies on this tiny vertebrate. This Review summarizes challenges and strengths of the model, discusses the 3Rs value that it can deliver, highlights translatable and untranslatable biology, and brings together reports from recent studies with zebrafish focusing on new drug discovery toxicology.
Assuntos
Descoberta de Drogas , Modelos Animais , Testes de Toxicidade/métodos , Peixe-Zebra , Alternativas ao Uso de Animais , Animais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Embrião não MamíferoRESUMO
The feed industry continuously seeks new molecules with antioxidant capacity since oxidative stress plays a key role in intestinal health. To improve screening of new antioxidants, this study aims to set up an assay to assess oxidative stress in the porcine small intestinal epithelial cell line IPEC-J2 using plate-reader-based analysis of fluorescence. Two oxidants, H2O2 and menadione, were tested at 1, 2 and 3 mM and 100, 200 and 300 µM, respectively. Trolox (2 mM) was used as the reference antioxidant and the probe CM-H2DCFDA was used to indicate intracellular oxidative stress. Cell culture, reactive oxygen species (ROS) production and assessment conditions were optimized to detect a significant ROS accumulation that could be counteracted by pre-incubation with trolox. Menadione (200 µM) reproducibly increased ROS levels, H2O2 failed to do so. Trolox significantly decreased intracellular ROS levels in menadione (200 µM)-exposed cells in a consistent way. The system was further used to screen different concentrations of the commercially available antioxidant ELIFE®. Concentrations between 100 and 200 ppm protected best against intracellular ROS accumulation. In conclusion, the combination of CM-H2DCFDA fluorescence analysis by a plate-reader, trolox as a reference antioxidant and 200 µM of menadione as a stressor agent, provides a replicable and reliable medium-throughput setup for the evaluation of intracellular oxidative stress in IPEC-J2 cells.
Assuntos
Antioxidantes/farmacologia , Cromanos/farmacologia , Células Epiteliais/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Vitamina K 3/antagonistas & inibidores , Ração Animal , Animais , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fluoresceínas/química , Corantes Fluorescentes/química , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/farmacologia , Intestino Delgado/citologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Oxidantes/antagonistas & inibidores , Oxidantes/farmacologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Suínos , Vitamina K 3/farmacologiaRESUMO
The hypothalamic-pituitary-thyroid (HPT) axis is known to play a crucial role in the development of teleost fish. However, knowledge of endogenous transcription profiles of thyroid-related genes in developing teleosts remains fragmented. We selected two model teleost species, the fathead minnow (Pimephales promelas) and the zebrafish (Danio rerio), to compare the gene transcription ontogeny of the HPT axis. Control organisms were sampled at several time points during embryonic and larval development until 33â¯days post-fertilization. Total RNA was extracted from pooled, whole fish, and thyroid-related mRNA expression was evaluated using quantitative polymerase chain reaction. Gene transcripts examined included: thyrotropin-releasing hormone receptor (trhr), thyroid-stimulating hormone receptor (tshr), sodium-iodide symporter (nis), thyroid peroxidase (tpo), thyroglobulin (tg), transthyretin (ttr), deiodinases 1, 2, 3a, and 3b (dio1, dio2, dio3a and 3b), and thyroid hormone receptors alpha and beta (thrα and ß). A loess regression method was successful in identifying maxima and minima of transcriptional expression during early development of both species. Overall, we observed great similarities between the species, including maternal transfer, at least to some extent, of almost all transcripts (confirmed in unfertilized eggs), increasing expression of most transcripts during hatching and embryo-larval transition, and indications of a fully functional HPT axis in larvae. These data will aid in the development of hypotheses on the role of certain genes and pathways during development. Furthermore, this provides a background reference dataset for designing and interpreting targeted transcriptional expression studies both for fundamental research and for applications such as toxicology.
Assuntos
Cyprinidae/embriologia , Cyprinidae/genética , Sistema Hipotálamo-Hipofisário/metabolismo , Glândula Tireoide/metabolismo , Transcrição Gênica , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Desenvolvimento Embrionário , Proteínas de Peixes/metabolismo , Larva/metabolismo , Análise de Componente Principal , Especificidade da EspécieRESUMO
The zebrafish (Danio rerio) embryo is currently explored as an alternative for developmental toxicity testing. As maternal metabolism is lacking in this model, knowledge of the disposition of xenobiotics during zebrafish organogenesis is pivotal in order to correctly interpret the outcome of teratogenicity assays. Therefore, the aim of this study was to assess cytochrome P450 (CYP) activity in zebrafish embryos and larvae until 14 d post-fertilization (dpf) by using a non-specific CYP substrate, i.e., benzyloxy-methyl-resorufin (BOMR) and a CYP1-specific substrate, i.e., 7-ethoxyresorufin (ER). Moreover, the constitutive mRNA expression of CYP1A, CYP1B1, CYP1C1, CYP1C2, CYP2K6, CYP3A65, CYP3C1, phase II enzymes uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) and sulfotransferase 1st1 (SULT1ST1), and an ATP-binding cassette (ABC) drug transporter, i.e., abcb4, was assessed during zebrafish development until 32 dpf by means of quantitative PCR (qPCR). The present study showed that trancripts and/or the activity of these proteins involved in disposition of xenobiotics are generally low to undetectable before 72 h post-fertilization (hpf), which has to be taken into account in teratogenicity testing. Full capacity appears to be reached by the end of organogenesis (i.e., 120 hpf), although CYP1-except CYP1A-and SULT1ST1 were shown to be already mature in early embryonic development.
Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Preparações Farmacêuticas/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Biotransformação/genética , Embrião não Mamífero/metabolismo , Larva/genética , Oxazinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Locomotion is one of the most important ecological functions in animals. Precocial animals, such as pigs, are capable of independent locomotion shortly after birth. This raises the question whether coordinated movement patterns and the underlying muscular control in these animals is fully innate or whether there still exists a rapid maturation. We addressed this question by studying gait development in neonatal pigs through the analysis of spatio-temporal gait characteristics during locomotion at self-selected speed. To this end, we made video recordings of piglets walking along a corridor at several time points (from 0â h to 96â h). After digitization of the footfalls, we analysed self-selected speed and spatio-temporal characteristics (e.g. stride and step lengths, stride frequency and duty factor) to study dynamic similarity, intralimb coordination and interlimb coordination. To assess the variability of the gait pattern, left-right asymmetry was studied. To distinguish neuromotor maturation from effects caused by growth, both absolute and normalized data (according to the dynamic similarity concept) were included in the analysis. All normalized spatio-temporal variables reached stable values within 4â h of birth, with most of them showing little change after the age of 2â h. Most asymmetry indices showed stable values, hovering around 10%, within 8â h of birth. These results indicate that coordinated movement patterns are not entirely innate, but that a rapid neuromotor maturation, potentially also the result of the rearrangement or recombination of existing motor modules, takes place in these precocial animals.
Assuntos
Animais Recém-Nascidos/fisiologia , Marcha , Sus scrofa/fisiologia , Animais , Feminino , Instinto , Masculino , Sus scrofa/crescimento & desenvolvimento , Gravação em VídeoRESUMO
PURPOSE: In view of pediatric drug development, juvenile animal studies are gaining importance. However, data on drug metabolizing capacities of juvenile animals are scarce, especially in non-rodent species. Therefore, we aimed to characterize the in vitro biotransformation of four human CYP450 substrates and one UGT substrate in the livers of developing Göttingen minipigs. METHODS: Liver microsomes from late fetal, Day 1, Day 3, Day 7, Day 28, and adult male and female Göttingen minipigs were incubated with a cocktail of CYP450 substrates, including phenacetin, tolbutamide, dextromethorphan, and midazolam. The latter are probe substrates for human CYP1A2, CYP2C9, CYP2D6, and CYP3A4, respectively. In addition, the UGT multienzyme substrate (from the UGT-GloTM assay), which is glucuronidated by several human UGT1A and UGT2B enzymes, was also incubated with the porcine liver microsomes. RESULTS: For all tested substrates, drug metabolism significantly rose postnatally. At one month of age, 60.5 and 75.4% of adult activities were observed for acetaminophen and dextrorphan formations, respectively, while 35.4 and 43.2% of adult activities were present for 4-OH-tolbutamide and 1'-OH-midazolam formations. Biotransformation of phenacetin was significantly higher in 28-day-old and adult females compared with males. CONCLUSIONS: Maturation of metabolizing capacities occurred postnatally, as described in man.
Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Biotransformação , Dextrometorfano/metabolismo , Feminino , Feto , Glucuronosiltransferase/metabolismo , Humanos , Masculino , Desintoxicação Metabólica Fase I , Desintoxicação Metabólica Fase II , Midazolam/metabolismo , Fenacetina/metabolismo , Suínos , Porco Miniatura , Tolbutamida/metabolismoRESUMO
At present, the zebrafish embryo is increasingly used as an alternative animal model to screen for developmental toxicity after exposure to xenobiotics. Since zebrafish embryos depend on their own drug-metabolizing capacity, knowledge of their intrinsic biotransformation is pivotal in order to correctly interpret the outcome of teratogenicity assays. Therefore, the aim of this in vitro study was to assess the activity of cytochrome P450 (CYP)-a group of drug-metabolizing enzymes-in microsomes from whole zebrafish embryos (ZEM) of 5, 24, 48, 72, 96 and 120 h post-fertilization (hpf) by means of a mammalian CYP substrate, i.e., benzyloxy-methyl-resorufin (BOMR). The same CYP activity assays were performed in adult zebrafish liver microsomes (ZLM) to serve as a reference for the embryos. In addition, activity assays with the human CYP3A4-specific Luciferin isopropyl acetal (Luciferin-IPA) as well as inhibition studies with ketoconazole and CYP3cide were carried out to identify CYP activity in ZLM. In the present study, biotransformation of BOMR was detected at 72 and 96 hpf; however, metabolite formation was low compared with ZLM. Furthermore, Luciferin-IPA was not metabolized by the zebrafish. In conclusion, the capacity of intrinsic biotransformation in zebrafish embryos appears to be lacking during a major part of organogenesis.
Assuntos
Citocromo P-450 CYP3A/metabolismo , Sondas Moleculares/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Biotransformação/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Luciferina de Vaga-Lumes/metabolismo , Humanos , Cetoconazol/farmacologia , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Oxazinas/metabolismo , Recombinação Genética/genética , Especificidade por Substrato/efeitos dos fármacosRESUMO
Accurately assessing the toxicity of complex, environmentally relevant mixtures remains an important challenge in ecotoxicology. The goal was to identify biological effects after exposure to environmental water samples and to determine whether the observed effects could be explained by the waterborne metal mixture found in the samples. Zebrafish embryos were exposed to water samples of five different sites originating from two Flemish (Mol and Olen, Belgium) metal contaminated streams: "Scheppelijke Nete" (SN) and "Kneutersloop" (K), and a ditch (D), which is the contamination source of SN. Trace metal concentrations, and Na, K, Mg and Ca concentrations were measured using ICP-MS and were used to reconstitute site-specific water samples. We assessed whether the effects that were observed after exposure to environmental samples could be explained by metal mixture toxicity under standardized laboratory conditions. Exposure to "D" or "reconstituted D" water caused 100% mortality. SN and reconstituted SN water caused similar effects on hatching, swim bladder inflation, growth and swimming activity. A canonical discriminant analysis confirmed a high similarity between both exposure scenarios, indicating that the observed toxicity was indeed primarily caused by metals. The applied workflow could be a valuable approach to evaluate mixture toxicity that limits time and costs while maintaining biological relevance.
Assuntos
Misturas Complexas/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Poluentes Químicos da Água/análise , Animais , Análise Discriminante , Desenvolvimento Embrionário/efeitos dos fármacos , Intoxicação por Metais Pesados , Intoxicação , Peixe-ZebraRESUMO
The Göttingen minipig is the most commonly used pig breed in preclinical drug development in Europe and has recently also been explored for physiologically based pharmacokinetic modelling. To develop such a model, not only physiological data from adult animals but also data from juvenile animals are required, especially when using this model for paediatric drug development. Therefore, the aim of our study was to document body and organ weights (brain, heart, lungs, liver, gastrointestinal tract, spleen and kidney), lengths of the small and large intestines and pH values of the gastrointestinal tract in Göttingen minipigs from the foetal stage until the age of 5 months. Postnatal organ and body weights were fitted to regression models to find suitable equations that could be used to estimate organ weights as a function of body weight in the neonatal and juvenile Göttingen minipig. Most organs followed a non-linear growth curve during the first 5 months of life. In general, relative organ weights were the highest during the first week of life, during which the gastric pH was more alkaline than at 28 days of age.
Assuntos
Descoberta de Drogas/métodos , Modelos Animais , Tamanho do Órgão/fisiologia , Preparações Farmacêuticas/metabolismo , Porco Miniatura/crescimento & desenvolvimento , Animais , Peso Corporal/fisiologia , Trato Gastrointestinal/fisiologia , Concentração de Íons de Hidrogênio , Dinâmica não Linear , Farmacocinética , Suínos/crescimento & desenvolvimento , Suínos/metabolismoRESUMO
Novel antimicrobial strategies are necessary to tackle using antibiotics during the suckling and weaning period of piglets, often characterized by E. coli-induced diarrhea. In the last decades, acetate, propionate, and butyrate, all short-chain fatty acids (SCFAs), have been proposed as an alternative to antibiotics. SCFAs are instrumental in promoting the proliferation of enterocytes, preserving intestinal integrity, and modulating the microbial community by suppressing the growth of pathogenic bacteria in pigs. The effect of individual SCFAs (proprionate, acetate and butyrate) on the regenerative capacity of intestinal cells was investigated via an optimized wound-healing assay in IPEC-J2 cells, a porcine jejunal epithelial cell line. IPEC-J2 cells proved a good model as they express the free fatty acid receptor 2 (FFAR2), an important SCFA receptor with a high affinity for proprionate. Our study demonstrated that propionate (p = 0.005) and acetate (p = 0.037) were more effective in closing the wound than butyrate (p = 0.190). This holds promise in using SCFA's per os as an alternative to antibiotics.
Assuntos
Movimento Celular , Proliferação de Células , Ácidos Graxos Voláteis , Animais , Proliferação de Células/efeitos dos fármacos , Suínos , Ácidos Graxos Voláteis/farmacologia , Ácidos Graxos Voláteis/metabolismo , Movimento Celular/efeitos dos fármacos , Linhagem Celular , Butiratos/farmacologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/citologia , Mucosa Intestinal/microbiologia , Propionatos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismoRESUMO
This observational study explored the early-life challenges of intra-uterine growth restricted (IUGR), low birth body weight (LBW), and normal birth body weight (NBW) piglets. The aim was to understand the impact of birth weight and intra-uterine growth restriction phenotype on neonatal survival and behavior. Based on weight and phenotype, piglets were classified as IUGR (n = 32), LBW (n = 34), and NBW (n = 29) immediately after birth. The piglets were litter- and sex-matched. Vitality scores were assigned based on motor activity and breathing and complemented with an assessment of umbilical cord condition, rectal temperature, crown-rump length (CRL), time to reach the udder, time to suckle, colostrum intake, and weight gain over 24 h. Beyond the lower birth weight, reduced CRL, and higher mortality rate, IUGR piglets faced several other challenges compared with LBW and NBW piglets. Growth-impaired piglets often struggled to engage in early feeding behaviors and displayed consistently lower rectal temperatures at 1, 3 and 24 h after birth. IUGR piglets showed inadequate colostrum intake and weight loss, which were also observed for LBW counterparts. In contrast, no significant differences were observed in vitality scores and umbilical cord conditions across the groups. In conclusion, our findings underscore the impact of intra-uterine growth restriction on neonatal piglets, emphasizing the need for specialized care strategies to improve survival and health outcomes in IUGR.
RESUMO
Zebrafish embryo-based assays are a promising alternative for animal testing to screen new compounds for developmental toxicity. However, recent studies in zebrafish embryos showed an immature intrinsic cytochrome P450 (CYP)-mediated biotransformation capacity, as most CYPs were only active at the end of the organogenesis period. Data on other phase I enzymes involved in the biotransformation of xenobiotics in zebrafish embryos is limited. This information is pivotal for proteratogens needing bioactivation to exert their teratogenic potential. Therefore, this study aimed to investigate whether carbamazepine (CBZ) and levetiracetam (LTC), two anti-epileptic drugs that require bioactivation to exert their teratogenic potential, are biotransformed into non-CYP mediated metabolites in the zebrafish embryo and whether one or more of these metabolites cause developmental toxicity in this species. In the first step, zebrafish embryos were exposed to LTC and CBZ and their non-CYP mediated human metabolites, etiracetam carboxylic acid (ECA) and 9-acridine carboxaldehyde (9ACA), acridine (AI), and acridone (AO), respectively, from 5.25 to 120 hpf and morphologically evaluated. Next, the uptake of all compounds and the formation of the metabolites were assessed using LC-MS methods. As LTC and ECA were, respectively, poorly or not taken up by zebrafish larvae during the exposure experiments, we could not determine if LTC and ECA are teratogenic. However, biotransformation of LTC into ECA was observed at 24 hpf and 120 hpf, which indicates that the special type of B-esterase is already active at 24 hpf. CBZ and its three metabolites were teratogenic, as a significant increase in malformed embryos was observed for all of them. All three metabolites were more potent teratogens than CBZ, with AI being the most potent, followed by 9ACA and AO. The myeloperoxidase (MPO) homologue is already active at 24 hpf, as CBZ was biotransformed into 9ACA and AO in 24 hpf zebrafish embryos, and into 9ACA in 120 hpf larvae. Moreover, 9ACA was also found to be biotransformed into AI and AO, and AI into AO. As such, one or more of these metabolites probably contribute to the teratogenic effects observed in zebrafish larvae after exposure to CBZ.
RESUMO
Zebrafish embryo assays are used by pharmaceutical and chemical companies as new approach methodologies (NAMs) in developmental toxicity screening. Despite an overall high concordance of zebrafish embryo assays with in vivo mammalian studies, false negative and false positive results have been reported. False negative results in risk assessment models are of particular concern for human safety, as developmental anomalies may be missed. Interestingly, for several chemicals and drugs that were reported to be false negative in zebrafish, skeletal findings were noted in the in vivo studies. As the number of skeletal endpoints assessed in zebrafish is very limited compared to the in vivo mammalian studies, the aim of this study was to investigate whether the sensitivity could be increased by including a skeletal staining method. Three staining methods were tested on zebrafish embryos that were exposed to four teratogens that caused skeletal anomalies in rats and/or rabbits and were false negative in zebrafish embryo assays. These methods included a fixed alizarin red-alcian blue staining, a calcein staining, and a live alizarin red staining. The results showed a high variability in staining intensity of larvae exposed to mammalian skeletal teratogens, as well as variability between control larvae originating from the same clutch of zebrafish. Hence, biological variability in (onset of) bone development in zebrafish hampers the detection of (subtle) treatment-related bone effects that are not picked-up by gross morphology. In conclusion, the used skeletal staining methods did not increase the sensitivity of zebrafish embryo developmental toxicity assays.
Assuntos
Embrião não Mamífero , Teratogênicos , Testes de Toxicidade , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Teratogênicos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Testes de Toxicidade/métodos , Coloração e Rotulagem , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/anormalidades , Desenvolvimento Embrionário/efeitos dos fármacos , Fluoresceínas/toxicidade , Antraquinonas/toxicidadeRESUMO
Asphyxiated neonates often undergo therapeutic hypothermia (TH) to reduce morbidity and mortality. As perinatal asphyxia and TH impact neonatal physiology, this could also influence enzyme functionality. Therefore, this study aimed to unravel the impact of age, hypothermia and hypoxia on porcine hepatic cytochrome P450 (CYP) gene expression, protein abundance and activity. Hepatic CYP expression, protein abundance and activity were assessed in naive adult and neonatal Göttingen minipigs, alongside those from an (non-survival) in vivo study, where four conditions-control (C), therapeutic hypothermia (TH), hypoxia (H), hypoxia and TH (H + TH)-were examined. Naive neonatal Göttingen minipigs exhibited 75% lower general CYP activity and different gene expression patterns than adults. In vitro hypothermia (33°C) decreased general CYP activity in adult liver microsomes by 36%. Gene expression was not different between TH and C while hypoxia up-regulated several genes (i.e., CYP3A29 [expression ratio; ER = 5.1472] and CYP2C33 [ER = 3.2292] in the H group and CYP2C33 [ER = 2.4914] and CYP2C42 [ER = 4.0197] in the H + TH group). The medical treatment and the interventions over 24 h, along with hypoxia and TH, affected the protein abundance. These data on CYP expression, abundance and activity in young animals can be valuable in building physiologically-based pharmacokinetic models for neonatal drug dose predictions.