Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Nano Lett ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843032

RESUMO

The widespread application of III-V colloidal quantum dots (QDs) as nontoxic, highly tunable emitters is stymied by their high density of trap states. Here, we utilize density functional theory (DFT) to investigate trap state formation in a diverse set of realistically passivated core-only InP and GaP QDs. Through orbital localization techniques, we deconvolute the dense manifold of trap states to allow for detailed assignment of surface defects. We find that the three-coordinate species dominate trapping in III-V QDs and identify features in the geometry and charge environment of trap centers capable of deepening, or sometimes passivating, traps. Furthermore, we observe stark differences in surface reconstruction between InP and GaP, where the more labile InP reconstructs to passivate three-coordinate indium at the cost of distortion elsewhere. These results offer explanations for experimentally observed trapping behavior and suggest new avenues for controlling trap states in III-V QDs.

2.
Nano Lett ; 23(6): 2148-2157, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36884029

RESUMO

Quantum confined lead halide perovskite nanoplatelets are anisotropic materials displaying strongly bound excitons with spectrally pure photoluminescence. We report the controlled assembly of CsPbBr3 nanoplatelets through varying the evaporation rate of the dispersion solvent. We confirm the assembly of superlattices in the face-down and edge-up configurations by electron microscopy, as well as X-ray scattering and diffraction. Polarization-resolved spectroscopy shows that superlattices in the edge-up configuration display significantly polarized emission compared to face-down counterparts. Variable-temperature X-ray diffraction of both face-down and edge-up superlattices uncovers a uniaxial negative thermal expansion in ultrathin nanoplatelets, which reconciles the anomalous temperature dependence of the emission energy. Additional structural aspects are investigated by multilayer diffraction fitting, revealing a significant decrease in superlattice order with decreasing temperature, with a concomitant expansion of the organic sublattice and increase of lead halide octahedral tilt.

3.
Nano Lett ; 23(4): 1128-1134, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36780509

RESUMO

Lead halide perovskite nanocrystals (LHP NCs) are an emerging materials system with broad potential applications, including as emitters of quantum light. We apply design principles aimed at the structural optimization of surface ligand species for CsPbBr3 NCs, leading us to the study of LHP NCs with dicationic quaternary ammonium bromide ligands. Through the selection of linking groups and aliphatic backbones guided by experiments and computational support, we demonstrate consistently narrow photoluminescence line shapes with a full-width-at-half-maximum below 70 meV. We observe bulk-like Stokes shifts throughout our range of particle sizes, from 7 to 16 nm. At cryogenic temperatures, we find sub-200 ps lifetimes, significant photon coherence, and the fraction of photons emitted into the coherent channel increasing markedly to 86%. A 4-fold reduction in inhomogeneous broadening from previous work paves the way for the integration of LHP NC emitters into nanophotonic architectures to enable advanced quantum optical investigation.

4.
Nat Mater ; 21(11): 1275-1281, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36202994

RESUMO

Triplet-fusion-based photon upconversion holds promise for a wide range of applications, from photovoltaics to bioimaging. The efficiency of triplet fusion, however, is fundamentally limited in conventional molecular and polymeric systems by its spin dependence. Here, we show that the inherent tailorability of metal-organic frameworks (MOFs), combined with their highly porous but ordered structure, minimizes intertriplet exchange coupling and engineers effective spin mixing between singlet and quintet triplet-triplet pair states. We demonstrate singlet-quintet coupling in a pyrene-based MOF, NU-1000. An anomalous magnetic field effect is observed from NU-1000 corresponding to an induced resonance between singlet and quintet states that yields an increased fusion rate at room temperature under a relatively low applied magnetic field of 0.14 T. Our results suggest that MOFs offer particular promise for engineering the spin dynamics of multiexcitonic processes and improving their upconversion performance.


Assuntos
Estruturas Metalorgânicas , Polímeros/química
5.
J Phys Chem A ; 127(34): 7175-7185, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37585686

RESUMO

We use time-dependent density functional theory (TDDFT) to investigate the mechanism of efficient triplet-triplet upconversion (TTU) in certain organic materials. In particular, we focus on materials where some singlets are generated in a two-step spin-nonconserving process (T1 + T1 → T2 → S1). For this mechanism to contribute significantly, the intersystem crossing (ISC) from the high-lying triplet to the singlet (T2 → S1) must outcompete the internal conversion (IC) to the low-lying triplet (T2 → T1). By considering multiple families of materials, we show that the T2 → S1 ISC can be enhanced in a number of ways: the substitution of electron-donating (ED) and electron-withdrawing (EW) groups at appropriate positions; the substitution of bulky groups that distort the molecular geometry; and the substitution of heavy atoms that enhance the spin-orbit coupling (SOC). In the first two cases, the enhancements are consistent with El-Sayed's rule in that rapid T2 → S1 ISC requires significant differences in the characters of the S1 and the T2 wavefunctions. Together, these effects enable a wide tunability of T2 → S1 ISC rates over at least 5 orders of magnitude. Meanwhile, the T2 → T1 IC is inhibited in these systems due to the large T2 - T1 energy gap >0.5 eV, which entails a high energy barrier to the T2 → T1 IC and the prediction of a slow rate regardless of the substituents or the presence of heavy atoms. In this way, tuning the T2 → S1 ISC appears to provide an effective strategy to achieve systematic improvement of TTU materials.

6.
J Am Chem Soc ; 144(50): 23010-23018, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475637

RESUMO

Novel approaches to the functionalization of commodity polymers could provide avenues for the synthesis of materials for next-generation electronic devices. Herein, we present a catalytic method for the conversion of common unsaturated polymers such as polybutadiene, polyisoprene, and styrene-butadiene copolymers [e.g., polystyrene-block-polybutadiene-block-polystyrene and poly(styrene-stat-butadiene)] to poly(acetylene) (PA)-based multiblock copolymers with conjugation lengths of up to ∼20, making them potentially suitable for electronics applications. Additionally, we demonstrate the application of this method to the formal conversion of polyethylene─the most widely produced thermoplastic─into PA-containing multiblock materials.

7.
J Phys Chem A ; 126(20): 3090-3100, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35544770

RESUMO

Despite the long history of spectroscopic studies of the C2 molecule, fundamental questions about its chemical bonding are still being hotly debated. The complex electronic structure of C2 is a consequence of its dense manifold of near-degenerate, low-lying electronic states. A global multi-state diabatic model is proposed here to disentangle the numerous configuration interactions that occur within four symmetry manifolds of excited states of C2 (1Πg, 3Πg, 1Σu+ , and 3Σu+ ). The key concept of our model is the existence of two "valence-hole" configurations, 2σg22σu11πu33σg2 for 1,3Πg states and 2σg22σu11πu43σg1 for 1,3Σu+ states, that are derived from 3σg ← 2σu electron promotion. The lowest-energy state from each of the four C2 symmetry species is dominated by this type of valence-hole configuration at its equilibrium internuclear separation. As a result of their large binding energy (nominal bond order of 3) and correlation with the 2s22p2 + 2s2p3 separated-atom configurations, the presence of these valence-hole configurations has a profound impact on the global electronic structure and unimolecular dynamics of C2.

8.
Nano Lett ; 21(18): 7457-7464, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34516138

RESUMO

As luminescence applications of colloidal semiconductor nanocrystals push toward higher excitation flux conditions, there is an increased need to both understand and potentially control emission from multiexciton states. We develop a spectrally resolved correlation method to study the triply excited state that enables direct measurements of the recombination pathway for the triexciton, rather than relying on indirect extraction of rates. We demonstrate that, for core-shell CdSe-CdS nanocrystals, triexciton emission arises exclusively from the band-edge S-like state. Time-dependent density functional theory and extended particle-in-a-sphere calculations demonstrate that reduced carrier overlap induced by the core-shell heterostructure can account for the lack of emission observed from the P-like state. These results provide a potential avenue for the control of nanocrystal luminescence, where core-shell heterostructures can be leveraged to control carrier separation and therefore maintain emission color purity over a broader range of excitation fluxes.

9.
J Phys Chem A ; 125(35): 7644-7654, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34432438

RESUMO

We investigate a new strategy to enhance thermally activated delayed fluorescence (TADF) in organic light-emitting diodes (OLEDs). Given that the TADF rate of a molecule depends on its conformation, we hypothesize that there exists a conformation that maximizes the TADF rate. To test this idea, we use time-dependent density functional theory (TDDFT) to simulate the TADF rates of several TADF emitters while varying their geometries in a select subspace of internal coordinates. We find that geometric changes in this subspace can increase the TADF rate up to 3 orders of magnitude with respect to the minimum energy conformation, and the simulated TADF rate can even be brought into the submicrosecond time scales under the right conditions. Furthermore, the TADF rate enhancement can be maintained with a conformational energy that might be within the reach of modern synthetic chemistry. Analyzing the maximum TADF conformation, we extract a number of structural motifs that might provide a useful handle on the TADF rate of a donor-acceptor (DA) system. The incorporation of conformational engineering into the TADF technology could usher in a new paradigm of OLEDs.

10.
J Chem Phys ; 155(14): 144107, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34654306

RESUMO

Lattice models are a useful tool to simulate the kinetics of surface reactions. Since it is expensive to propagate the probabilities of the entire lattice configurations, it is practical to consider the occupation probabilities of a typical site or a cluster of sites instead. This amounts to a moment closure approximation of the chemical master equation. Unfortunately, simple closures, such as the mean-field and the pair approximation (PA), exhibit weaknesses in systems with significant long-range correlation. In this paper, we show that machine learning (ML) can be used to construct accurate moment closures in chemical kinetics using the lattice Lotka-Volterra model as a model system. We trained feedforward neural networks on kinetic Monte Carlo (KMC) results at select values of rate constants and initial conditions. Given the same level of input as PA, the ML moment closure (MLMC) gave accurate predictions of the instantaneous three-site occupation probabilities. Solving the kinetic equations in conjunction with MLMC gave drastic improvements in the simulated dynamics and descriptions of the dynamical regimes throughout the parameter space. In this way, MLMC is a promising tool to interpolate KMC simulations or construct pretrained closures that would enable researchers to extract useful insight at a fraction of the computational cost.

11.
Nano Lett ; 20(9): 6336-6343, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32787169

RESUMO

We investigate the effect of lattice disorder and local correlation effects in finite and periodic silicene structures caused by carbon doping using first-principles calculations. For both finite and periodic silicene structures, the electronic properties of carbon-doped monolayers are dramatically changed by controlling the doping sites in the structures, which is related to the amount of disorder introduced in the lattice and electron-electron correlation effects. By changing the position of the carbon dopants, we found that a Mott-Anderson transition is achieved. Moreover, the band gap is determined by the level of lattice disorder and electronic correlation effects. Finally, these structures are ferromagnetic even under disorder which has potential applications in Si-based nanoelectronics, such as field-effect transistors (FETs).

12.
J Chem Phys ; 153(21): 214101, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33291897

RESUMO

A suite of quantum embedding methods have recently been developed where the Schmidt decomposition is applied to the full system wavefunction to derive basis states that preserve the entanglement between the fragment and the bath. The quality of these methods can depend heavily on the quality of the initial full system wavefunction. Most of these methods, including bootstrap embedding (BE) [M. Welborn et al; J. Chem. Phys. 145, 074102 (2016)], start from a spin-restricted mean-field wavefunction [call this restricted BE (RBE)]. Given that spin-unrestricted wavefunctions can capture a significant amount of strong correlation at the mean-field level, we suspect that starting from a spin-unrestricted mean-field wavefunction will improve these embedding methods for strongly correlated systems. In this work, BE is generalized to an unrestricted Hartree-Fock bath [call this unrestricted BE (UBE)], and UBE is applied to model hydrogen ring systems. UBE's improved versatility over RBE is utilized to calculate high spin symmetry states that were previously unattainable with RBE. Ionization potentials, electron affinities, and spin-splittings are computed using UBE with accuracy on par with spin-unrestricted coupled cluster singles and doubles. Even for cases where RBE is viable, UBE converges more reliably. We discuss the limitations or weaknesses of each calculation and how improvements to RBE and density matrix embedding theory these past few years can also improve UBE.

13.
Chem Soc Rev ; 48(15): 4118-4154, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31190037

RESUMO

The accurate description of long-range electron correlation, most prominently including van der Waals (vdW) dispersion interactions, represents a particularly challenging task in the modeling of molecules and materials. vdW forces arise from the interaction of quantum-mechanical fluctuations in the electronic charge density. Within (semi-)local density functional approximations or Hartree-Fock theory such interactions are neglected altogether. Non-covalent vdW interactions, however, are ubiquitous in nature and play a key role for the understanding and accurate description of the stability, dynamics, structure, and response properties in a plethora of systems. During the last decade, many promising methods have been developed for modeling vdW interactions in electronic-structure calculations. These methods include vdW-inclusive Density Functional Theory and correlated post-Hartree-Fock approaches. Here, we focus on the methods within the framework of Density Functional Theory, including non-local van der Waals density functionals, interatomic dispersion models within many-body and pairwise formulation, and random phase approximation-based approaches. This review aims to guide the reader through the theoretical foundations of these methods in a tutorial-style manner and, in particular, highlight practical aspects such as the applicability and the advantages and shortcomings of current vdW-inclusive approaches. In addition, we give an overview of complementary experimental approaches, and discuss tools for the qualitative understanding of non-covalent interactions as well as energy decomposition techniques. Besides representing a reference for the current state-of-the-art, this work is thus also designed as a concise and detailed introduction to vdW-inclusive electronic structure calculations for a general and broad audience.

14.
Angew Chem Int Ed Engl ; 59(10): 3952-3955, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31825136

RESUMO

We present the discovery of a novel radical cation formed through one-electron oxidation of an N-heterocyclic carbene-carbodiimide (NHC-CDI) zwitterionic adduct. This compound possesses a distonic electronic structure (spatially separate spin and charge regions) and displays persistence under ambient conditions. We demonstrate its application in a redox-flow battery exhibiting minimal voltage hysteresis, a flat voltage plateau, high Coulombic efficiency, and no performance decay for at least 100 cycles. The chemical tunability of NHCs and CDIs suggests that this approach could provide a general entry to redox-active NHC-CDI adducts and their persistent radical ions for various applications.

15.
Angew Chem Int Ed Engl ; 59(7): 2784-2792, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31742840

RESUMO

Photoresponsive materials that change in response to light have been studied for a range of applications. These materials are often metastable during irradiation, returning to their pre-irradiated state after removal of the light source. Herein, we report a polymer gel comprising poly(ethylene glycol) star polymers linked by Cu24 L24 metal-organic cages/polyhedra (MOCs) with coumarin ligands. In the presence of UV light, a photosensitizer, and a hydrogen donor, this "polyMOC" material can be reversibly switched between CuII , CuI , and Cu0 . The instability of the MOC junctions in the CuI and Cu0 states leads to network disassembly, forming CuI /Cu0 solutions, respectively, that are stable until re-oxidation to CuII and supramolecular gelation. This reversible disassembly of the polyMOC network can occur in the presence of a fixed covalent second network generated in situ by copper-catalyzed azide-alkyne cycloaddition (CuAAC), providing interpenetrating supramolecular and covalent networks.

16.
J Chem Phys ; 151(3): 034112, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31325923

RESUMO

A new framework based on density matrix embedding theory (DMET) capable of directly targeting excited electronic states is proposed and implemented. DMET has previously been shown to be an effective method of calculating the ground state energies of systems exhibiting strong static correlation but has never been applied to calculate excited state energies. In this work, the Schmidt decomposition is applied directly on excited states, approximated by higher lying self-consistent field solutions. The DMET prescription is applied following this Schmidt decomposition allowing for a direct embedding of excited states. Initial results are obtained for a system of multiple hydrogen dimers and the lithium hydride dissociation. We analyze the nature of each part of the excited state DMET calculation and identify challenges. These challenges to the implementation of excited state DMET are discussed, and potential suggestions moving forward are recommended.

17.
J Am Chem Soc ; 140(43): 14413-14420, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30336006

RESUMO

π-Conjugated polyaniline nanofiber networks are an attractive material platform for reversible and selective capture and release of toxic heavy metal ions from water. The nanofiber geometry facilitates fastsorption kinetics, sulfur functionalization of the backbone for improved adsorption, and electrochemical control of the oxidation (charge) state for reversible triggered sorption/desorption of metal ions. These active materials also function as sensors in that the sorption of mercury ions can be detected by analysis of cyclic voltammograms. Calculations of binding energies between polyaniline and metal ions using molecular dynamics and density functional theory support the electrochemically controlled reversible sorption/desorption mechanism. These redox-active materials for removing Hg2+ from water create an attractive system that combines efficiency, capacity, selectivity, and reusability.

18.
J Am Chem Soc ; 140(34): 10881-10889, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30130100

RESUMO

Investigations of magnetism in electronically coupled polyradicals have largely focused on applications in photonic and magnetic devices, wherein radical polymers were found to possess molecularly tunable and cooperative magnetic properties. Radical polymers with nonconjugated insulating backbones have been intensively investigated previously; however the integration of radical species into conducting polymer backbones is at an early stage. We report herein 1,3-bisdiphenylene-2-phenylallyl (BDPA)-based conjugated radical polymers that display ambipolar redox activities and conductivities. Moreover, these radical polymers were demonstrated to be promising magneto-optic (MO) materials with Faraday rotations wherein the sign is modulated by the radical character and display absolute Verdet constants up to (2.80 ± 0.84) × 104 deg T-1 m-1 at 532 nm. These values rival the performance of the present-day commercial inorganic MO materials (e.g., terbium gallium garnet, V = -1.0 × 104 deg T-1 m-1 at 532 nm). The structure property studies detailed herein reveal the promise of multifunctional conjugated radical polymers as responsive MO materials.


Assuntos
Radicais Livres/química , Polímeros/química , Semicondutores , Condutividade Elétrica , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/síntese química , Radicais Livres/efeitos da radiação , Fenômenos Magnéticos , Oxirredução , Polímeros/síntese química , Polímeros/efeitos da radiação
19.
J Am Chem Soc ; 140(20): 6501-6508, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29762019

RESUMO

Materials with magneto-optic (MO) properties have enabled critical fiber-optic applications and highly sensitive magnetic field sensors. While traditional MO materials are inorganic in nature, new generations of MO materials based on organic semiconducting polymers could allow increased versatility for device architectures, manufacturing options, and flexible mechanics. However, the origin of MO activity in semiconducting polymers is far from understood. In this paper, we report high MO activity observed in a chiral helical poly-3-(alkylsulfone)thiophene (P3AST), which confirms a new design for the creation of a giant Faraday effect with Verdet constants up to (7.63 ± 0.78) × 104 deg T-1 m-1 at 532 nm. We have determined that the sign of the Verdet constant and its magnitude are related to the helicity of the polymer at the measured wavelength. The Faraday rotation and the helical conformation of P3AST are modulated by thermal annealing, which is further supported by DFT calculations and MD simulations. Our results demonstrate that helical polymers exhibit enhanced Verdet constants and expand the previous design space for polythiophene MO materials that was thought to be limited to highly regular lamellar structures. The structure-property studies herein provide insights for the design of next-generation MO materials based upon semiconducting organic polymers.

20.
J Am Chem Soc ; 140(24): 7543-7553, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29846066

RESUMO

Hybrid organic:inorganic materials composed of semiconductor nanocrystals functionalized with acene ligands have recently emerged as a promising platform for photon upconversion. Infrared light absorbed by a nanocrystal excites charge carriers that can pass to surface-bound acenes, forming triplet excitons capable of fusing to produce visible radiation. To fully realize this scheme, energy transfer between nanocrystals and acenes must occur with high efficiency, yet the mechanism of this process remains poorly understood. To improve our knowledge of the fundamental steps involved in nanoparticle:acene energy transfer, we used ultrafast transient absorption to investigate excited electronic dynamics of PbS nanocrystals chemically functionalized with 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) ligands. We find photoexcitation of PbS does not lead to direct triplet energy transfer to surface-bound TIPS-pentacene molecules but rather to the formation of an intermediate state within 40 ps. This intermediate persists for ∼100 ns before evolving to produce TIPS-pentacene triplet excitons. Analysis of transient absorption lineshapes suggests this intermediate corresponds to charge carriers localized at the PbS nanocrystal surface. This hypothesis is supported by constrained DFT calculations that find a large number of spin-triplet states at PbS NC surfaces. Though some of these states can facilitate triplet transfer, others serve as traps that hinder it. Our results highlight that nanocrystal surfaces play an active role in mediating energy transfer to bound acene ligands and must be considered when optimizing composite NC-based materials for photon upconversion, photocatalysis, and other optoelectronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA