RESUMO
BACKGROUND: The importance of protein glycosylation in regulating lipid metabolism is becoming increasingly apparent. We set out to further investigate this by studying patients with type I congenital disorders of glycosylation (CDGs) with defective N-glycosylation. METHODS: We studied 29 patients with the 2 most prevalent types of type I CDG, ALG6 (asparagine-linked glycosylation protein 6)-deficiency CDG and PMM2 (phosphomannomutase 2)-deficiency CDG, and 23 first- and second-degree relatives with a heterozygous mutation and measured plasma cholesterol levels. Low-density lipoprotein (LDL) metabolism was studied in 3 cell models-gene silencing in HepG2 cells, patient fibroblasts, and patient hepatocyte-like cells derived from induced pluripotent stem cells-by measuring apolipoprotein B production and secretion, LDL receptor expression and membrane abundance, and LDL particle uptake. Furthermore, SREBP2 (sterol regulatory element-binding protein 2) protein expression and activation and endoplasmic reticulum stress markers were studied. RESULTS: We report hypobetalipoproteinemia (LDL cholesterol [LDL-C] and apolipoprotein B below the fifth percentile) in a large cohort of patients with type I CDG (mean age, 9 years), together with reduced LDL-C and apolipoprotein B in clinically unaffected heterozygous relatives (mean age, 46 years), compared with 2 separate sets of age- and sex-matched control subjects. ALG6 and PMM2 deficiency led to markedly increased LDL uptake as a result of increased cell surface LDL receptor abundance. Mechanistically, this outcome was driven by increased SREBP2 protein expression accompanied by amplified target gene expression, resulting in higher LDL receptor protein levels. Endoplasmic reticulum stress was not found to be a major mediator. CONCLUSIONS: Our study establishes N-glycosylation as an important regulator of LDL metabolism. Given that LDL-C was also reduced in a group of clinically unaffected heterozygotes, we propose that increasing LDL receptor-mediated cholesterol clearance by targeting N-glycosylation in the LDL pathway may represent a novel therapeutic strategy to reduce LDL-C and cardiovascular disease.
Assuntos
LDL-Colesterol/genética , Glicosilação , Receptores de LDL/metabolismo , Criança , Feminino , Humanos , MasculinoRESUMO
The importance of protein glycosylation in regulating lipid metabolism is becoming increasingly apparent. We set out to further investigate this by studying the effects of defective glycosylation on plasma lipids in patients with B4GALT1-CDG, caused by a mutation in B4GALT1 with defective N-linked glycosylation. We studied plasma lipids, cholesteryl ester transfer protein (CETP) glyco-isoforms with isoelectric focusing followed by a western blot and CETP activity in three known B4GALT1-CDG patients and compared them with 11 age- and gender-matched, healthy controls. B4GALT1-CDG patients have significantly lowered non-high density lipoprotein cholesterol (HDL-c) and total cholesterol to HDL-c ratio compared with controls and larger HDL particles. Plasma CETP was hypoglycosylated and less active in B4GALT1-CDG patients compared to matched controls. Our study provides insight into the role of protein glycosylation in human lipoprotein homeostasis. The hypogalactosylated, hypo-active CETP found in patients with B4GALT1-CDG indicates a role of protein galactosylation in regulating plasma HDL and LDL. Patients with B4GALT1-CDG have large HDL particles probably due to hypogalactosylated, hypo-active CETP.
Assuntos
Proteínas de Transferência de Ésteres de Colesterol/metabolismo , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Defeitos Congênitos da Glicosilação/genética , Galactosiltransferases/genética , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Proteínas de Transferência de Ésteres de Colesterol/genética , Defeitos Congênitos da Glicosilação/metabolismo , Feminino , Glicosilação , Homozigoto , Humanos , Lactente , Masculino , MutaçãoRESUMO
Congenital disorders of glycosylation (CDGs) form a genetically and clinically heterogeneous group of diseases with aberrant protein glycosylation as a hallmark. A subgroup of CDGs can be attributed to disturbed Golgi homeostasis. However, identification of pathogenic variants is seriously complicated by the large number of proteins involved. As part of a strategy to identify human homologs of yeast proteins that are known to be involved in Golgi homeostasis, we identified uncharacterized transmembrane protein 199 (TMEM199, previously called C17orf32) as a human homolog of yeast V-ATPase assembly factor Vph2p (also known as Vma12p). Subsequently, we analyzed raw exome-sequencing data from families affected by genetically unsolved CDGs and identified four individuals with different mutations in TMEM199. The adolescent individuals presented with a mild phenotype of hepatic steatosis, elevated aminotransferases and alkaline phosphatase, and hypercholesterolemia, as well as low serum ceruloplasmin. Affected individuals showed abnormal N- and mucin-type O-glycosylation, and mass spectrometry indicated reduced incorporation of galactose and sialic acid, as seen in other Golgi homeostasis defects. Metabolic labeling of sialic acids in fibroblasts confirmed deficient Golgi glycosylation, which was restored by lentiviral transduction with wild-type TMEM199. V5-tagged TMEM199 localized with ERGIC and COPI markers in HeLa cells, and electron microscopy of a liver biopsy showed dilated organelles suggestive of the endoplasmic reticulum and Golgi apparatus. In conclusion, we have identified TMEM199 as a protein involved in Golgi homeostasis and show that TMEM199 deficiency results in a hepatic phenotype with abnormal glycosylation.
Assuntos
Fosfatase Alcalina/metabolismo , Colesterol/metabolismo , Complexo de Golgi/genética , Homeostase , Proteínas de Membrana/deficiência , Transaminases/metabolismo , Adulto , Sequência de Aminoácidos , Ceruloplasmina/metabolismo , Retículo Endoplasmático/metabolismo , Exoma , Fibroblastos/metabolismo , Genótipo , Glicosilação , Complexo de Golgi/metabolismo , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação , Fenótipo , Adulto JovemRESUMO
Disorders of Golgi homeostasis form an emerging group of genetic defects. The highly heterogeneous clinical spectrum is not explained by our current understanding of the underlying cell-biological processes in the Golgi. Therefore, uncovering genetic defects and annotating gene function are challenging. Exome sequencing in a family with three siblings affected by abnormal Golgi glycosylation revealed a homozygous missense mutation, c.92T>C (p.Leu31Ser), in coiled-coil domain containing 115 (CCDC115), the function of which is unknown. The same mutation was identified in three unrelated families, and in one family it was compound heterozygous in combination with a heterozygous deletion of CCDC115. An additional homozygous missense mutation, c.31G>T (p.Asp11Tyr), was found in a family with two affected siblings. All individuals displayed a storage-disease-like phenotype involving hepatosplenomegaly, which regressed with age, highly elevated bone-derived alkaline phosphatase, elevated aminotransferases, and elevated cholesterol, in combination with abnormal copper metabolism and neurological symptoms. Two individuals died of liver failure, and one individual was successfully treated by liver transplantation. Abnormal N- and mucin type O-glycosylation was found on serum proteins, and reduced metabolic labeling of sialic acids was found in fibroblasts, which was restored after complementation with wild-type CCDC115. PSI-BLAST homology detection revealed reciprocal homology with Vma22p, the yeast V-ATPase assembly factor located in the endoplasmic reticulum (ER). Human CCDC115 mainly localized to the ERGIC and to COPI vesicles, but not to the ER. These data, in combination with the phenotypic spectrum, which is distinct from that associated with defects in V-ATPase core subunits, suggest a more general role for CCDC115 in Golgi trafficking. Our study reveals CCDC115 deficiency as a disorder of Golgi homeostasis that can be readily identified via screening for abnormal glycosylation in plasma.
Assuntos
Complexo de Golgi/genética , Homeostase , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Sequência de Aminoácidos , Criança , Pré-Escolar , Clonagem Molecular , Retículo Endoplasmático/metabolismo , Exoma , Feminino , Fibroblastos/citologia , Glicosilação , Complexo de Golgi/metabolismo , Células HeLa , Heterozigoto , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Linhagem , Fenótipo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
PURPOSE OF REVIEW: Human genetics has provided new insights into the role of protein glycosylation in regulating lipoprotein metabolism. Here we review these new developments and discuss the biological insights they provide. RECENT FINDINGS: Case descriptions of patients with congenital defects in N-glycosylation (CDG-I) frequently describe a distinct hypocholesterolemia in these rare multisystem clinical syndromes. Two novel CDGs with disturbed Golgi homeostasis and trafficking defects result in mixed glycosylation disorders, hepatic steatosis and hypercholesterolemia. In addition, the presence of particular N-glycans is essential for physiological membrane expression of scavenger receptor B1 and for adequate lipolytic activity of endothelial lipase. GalNAc-T2, a specific O-glycosyl transferase, was found to be a direct modulator of HDL metabolism across mammals, validating its relationship with HDL-c found in genome-wide association studies. Furthermore, genetic variation in ASGR1, the major subunit of the asialoglycoprotein receptor (ASGPR), was found to be associated with a reduction in LDL-c and risk of coronary artery disease. SUMMARY: Protein glycosylation plays an important regulatory role in lipoprotein metabolism. Greater insight into how protein glycosylation regulates lipoprotein metabolism could provide novel approaches for the treatment of dyslipidemia.
Assuntos
Lipoproteínas/metabolismo , Animais , Glicosilação , Complexo de Golgi/metabolismo , Humanos , Transporte ProteicoRESUMO
Sick sinus syndrome and atrioventricular block are common clinical problems, often necessitating permanent pacemaker placement, yet the pathophysiology of these conditions remains poorly understood. Here we show that Transient Receptor Potential Melastatin 7 (TRPM7), a divalent-permeant channel-kinase of unknown function, is highly expressed in embryonic myocardium and sinoatrial node (SAN) and is required for cardiac automaticity in these specialized tissues. TRPM7 disruption in vitro, in cultured embryonic cardiomyocytes, significantly reduces spontaneous Ca(2+) transient firing rates and is associated with robust down-regulation of Hcn4, Cav3.1, and SERCA2a mRNA. TRPM7 knockdown in zebrafish, global murine cardiac Trpm7 deletion (KO(αMHC-Cre)), and tamoxifen-inducible SAN restricted Trpm7 deletion (KO(HCN4-CreERT2)) disrupts cardiac automaticity in vivo. Telemetered and sedated KO(αMHC-Cre) and KO(HCN4-CreERT2) mice show episodes of sinus pauses and atrioventricular block. Isolated SAN from KO(αMHC-Cre) mice exhibit diminished Ca(2+) transient firing rates with a blunted diastolic increase in Ca(2+). Action potential firing rates are diminished owing to slower diastolic depolarization. Accordingly, Hcn4 mRNA and the pacemaker current, I(f), are diminished in SAN from both KO(αMHC-Cre) and KO(HCN4-CreERT2) mice. Moreover, heart rates of KO(αMHC-Cre) mice are less sensitive to the selective I(f) blocker ivabradine, and acute application of the recently identified TRPM7 blocker FTY720 has no effect on action potential firing rates of wild-type SAN cells. We conclude that TRPM7 influences diastolic membrane depolarization and automaticity in SAN indirectly via regulation of Hcn4 expression.
Assuntos
Coração/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Canais de Cátion TRPM/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Coração/embriologia , Frequência Cardíaca/genética , Frequência Cardíaca/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Microscopia Confocal , Miocárdio/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nó Sinoatrial/citologia , Nó Sinoatrial/embriologia , Canais de Cátion TRPM/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
BACKGROUND: Transient receptor potential (TRP) channels are a superfamily of broadly expressed ion channels with diverse physiological roles. TRPC1, TRPC3, and TRPC6 are believed to contribute to cardiac hypertrophy in mouse models. Human mutations in TRPM4 have been linked to progressive familial heart block. TRPM7 is a divalent-permeant channel and kinase of unknown function, recently implicated in the pathogenesis of atrial fibrillation; however, its function in ventricular myocardium remains unexplored. METHODS AND RESULTS: We generated multiple cardiac-targeted knockout mice to test the hypothesis that TRPM7 is required for normal ventricular function. Early cardiac Trpm7 deletion (before embryonic day 9; TnT/Isl1-Cre) results in congestive heart failure and death by embryonic day 11.5 as a result of hypoproliferation of the compact myocardium. Remarkably, Trpm7 deletion late in cardiogenesis (about embryonic day 13; αMHC-Cre) produces viable mice with normal adult ventricular size, function, and myocardial transcriptional profile. Trpm7 deletion at an intermediate time point results in 50% of mice developing cardiomyopathy associated with heart block, impaired repolarization, and ventricular arrhythmias. Microarray analysis reveals elevations in transcripts of hypertrophy/remodeling genes and reductions in genes important for suppressing hypertrophy (Hdac9) and for ventricular repolarization (Kcnd2) and conduction (Hcn4). These transcriptional changes are accompanied by action potential prolongation and reductions in transient outward current (Ito; Kcnd2). Similarly, the pacemaker current (If; Hcn4) is suppressed in atrioventricular nodal cells, accounting for the observed heart block. CONCLUSIONS: Trpm7 is dispensable in adult ventricular myocardium under basal conditions but is critical for myocardial proliferation during early cardiogenesis. Loss of Trpm7 at an intermediate developmental time point alters the myocardial transcriptional profile in adulthood, impairing ventricular function, conduction, and repolarization.
Assuntos
Deleção de Genes , Sistema de Condução Cardíaco/fisiologia , Miocárdio/citologia , Miócitos Cardíacos/fisiologia , Canais de Cátion TRPM/deficiência , Função Ventricular/fisiologia , Potenciais de Ação/fisiologia , Fatores Etários , Animais , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Canais de Cátion TRPM/genética , Fatores de TempoRESUMO
BACKGROUND & AIMS: Recently, novel inborn errors of metabolism were identified because of mutations in V-ATPase assembly factors TMEM199 and CCDC115. Patients are characterized by generalized protein glycosylation defects, hypercholesterolemia, and fatty liver disease. Here, we set out to characterize the lipid and fatty liver phenotype in human plasma, cell models, and a mouse model. METHODS AND RESULTS: Patients with TMEM199 and CCDC115 mutations displayed hyperlipidemia, characterized by increased levels of lipoproteins in the very low density lipoprotein range. HepG2 hepatoma cells, in which the expression of TMEM199 and CCDC115 was silenced, and induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells from patients with TMEM199 mutations showed markedly increased secretion of apolipoprotein B (apoB) compared with controls. A mouse model for TMEM199 deficiency with a CRISPR/Cas9-mediated knock-in of the human A7E mutation had marked hepatic steatosis on chow diet. Plasma N-glycans were hypogalactosylated, consistent with the patient phenotype, but no clear plasma lipid abnormalities were observed in the mouse model. In the siTMEM199 and siCCDC115 HepG2 hepatocyte models, increased numbers and size of lipid droplets were observed, including abnormally large lipid droplets, which colocalized with lysosomes. Excessive de novo lipogenesis, failing oxidative capacity, and elevated lipid uptake were not observed. Further investigation of lysosomal function revealed impaired acidification combined with impaired autophagic capacity. CONCLUSIONS: Our data suggest that the hypercholesterolemia in TMEM199 and CCDC115 deficiency is due to increased secretion of apoB-containing particles. This may in turn be secondary to the hepatic steatosis observed in these patients as well as in the mouse model. Mechanistically, we observed impaired lysosomal function characterized by reduced acidification, autophagy, and increased lysosomal lipid accumulation. These findings could explain the hepatic steatosis seen in patients and highlight the importance of lipophagy in fatty liver disease. Because this pathway remains understudied and its regulation is largely untargeted, further exploration of this pathway may offer novel strategies for therapeutic interventions to reduce lipotoxicity in fatty liver disease.
Assuntos
Fígado Gorduroso , Gotículas Lipídicas , Animais , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mutação/genética , Proteínas do Tecido Nervoso/genéticaRESUMO
BACKGROUND AND AIMS: The rare ASGR1 del12 variant is associated with a beneficial effect on coronary artery disease (CAD) that is disproportionate to the small reductions in plasma LDL cholesterol (LDLc). This unexplained benefit has sparked the debate on potential additional pleiotropic effects of ASGR1 variants. Since ASGR1 has also been implicated in platelet homeostasis, we evaluated platelet function in heterozygous ASGR1 del12 carriers and controls. In addition, we compared the magnitude of various LDLc lowering genetic scores in the UK-biobank using Mendelian randomization. METHODS: Desialylation of platelet surface glycoproteins and platelet aggregation capacity were measured in 12 carriers and 10 controls. We selected 3 common genetic variants in the ASGR1 locus that were significantly associated with plasma LDLc and assessed the association with coronary artery disease (CAD) and compared it with the effects of HMCGR, LDLR, NCI1L1 and PCSK9 gene scores. RESULTS: Platelet surface GlcNAC residues were significantly lower in carriers but platelet aggregation did not differ. The relative risk reduction of ASGR1 GRS on CAD and myocardial infarction per 10 mg/dl LDLc reduction was 23% (OR 0.77, 95% CI 0.62-0.96). This risk reduction was proportionally similar to the gene risk scores in HMCGR, NPC1L1, PCSK9, and LDLR. CONCLUSIONS: Unlike previous reports, we did not find any evidence for a pleiotropic effect of the rare del12 variant in the ASGR1 locus on CAD, as platelet function did not differ between carriers and controls. Moreover, the observed effect of ASGR1 variants on CAD risk was proportional to the reduction in plasma LDLc levels.