Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Arch Toxicol ; 95(10): 3341-3359, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34313809

RESUMO

Aging and smoking are major risk factors for cardiovascular diseases (CVD). Our in vitro study compared, in the context of aging, the effects of the aerosol of Tobacco Heating System 2.2 (THS; an electrically heated tobacco product) and 3R4F reference cigarette smoke (CS) on processes that contribute to vascular pathomechanisms leading to CVD. Young and old human aortic smooth muscle cells (HAoSMC) were exposed to various concentrations of aqueous extracts (AE) from 3R4F CS [0.014-0.22 puffs/mL] or THS aerosol [0.11-1.76 puffs/mL] for 24 h. Key markers were measured by high-content imaging, transcriptomics profiling and multianalyte profiling. In our study, in vitro aging increased senescence, DNA damage, and inflammation and decreased proliferation in the HAoSMCs. At higher concentrations of 3R4F AE, young HAoSMCs behaved similarly to aged cells, while old HAoSMCs showed additional DNA damage and apoptosis effects. At 3R4F AE concentrations with the maximum effect, the THS AE showed no significant effect in young or old HAoSMCs. It required an approximately ten-fold higher concentration of THS AE to induce effects similar to those observed with 3R4F. These effects were independent of nicotine, which did not show a significant effect on HAoSMCs at any tested concentration. Our results show that 3R4F AE accelerates aging in young HAoSMCs and exacerbates the aging effect in old HAoSMCs in vitro, consistent with CS-related contributions to the risk of CVD. Relative to 3R4F AE, the THS AE showed a significantly reduced impact on HAoSMCs, suggesting its lower risk for vascular SMC-associated pathomechanisms leading to CVD.


Assuntos
Senilidade Prematura/etiologia , Miócitos de Músculo Liso/efeitos dos fármacos , Nicotiana/efeitos adversos , Fumaça/efeitos adversos , Aerossóis , Aorta/citologia , Aorta/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Senescência Celular , Dano ao DNA/efeitos dos fármacos , Humanos , Inflamação/etiologia , Miócitos de Músculo Liso/patologia , Fumar/efeitos adversos , Produtos do Tabaco
2.
Cell Physiol Biochem ; 54(2): 230-251, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32153152

RESUMO

BACKGROUND/AIMS: Adverse effects of cigarette smoke on health are widely known. Heating rather than combusting tobacco is one of strategies to reduce the formation of toxicants. The sensitive nature of mitochondrial dynamics makes the mitochondria an early indicator of cellular stress. For this reason, we studied the morphology and dynamics of the mitochondrial network in human bronchial epithelial cells (BEAS-2B) exposed to total particulate matter (TPM) generated from 3R4F reference cigarette smoke and from aerosol from a new candidate modified risk tobacco product, the Tobacco Heating System (THS 2.2). METHODS: Cells were subjected to short (1 week) and chronic (12 weeks) exposure to a low (7.5 µg/mL) concentration of 3R4F TPM and low (7.5 µg/mL), medium (37.5 µg/mL), and high (150 µg/mL) concentrations of TPM from THS 2.2. Confocal microscopy was applied to assess cellular and mitochondrial morphology. Cytosolic Ca2+ levels, mitochondrial membrane potential and mitochondrial mass were measured with appropriate fluorescent probes on laser scanning cytometer. The levels of proteins regulating mitochondrial dynamics and biogenesis were determined by Western blot. RESULTS: In BEAS-2B cells exposed for one week to the low concentration of 3R4F TPM and the high concentration of THS 2.2 TPM we observed clear changes in cell morphology, mitochondrial network fragmentation, altered levels of mitochondrial fusion and fission proteins and decreased biogenesis markers. Also cellular proliferation was slowed down. Upon chronic exposure (12 weeks) many parameters were affected in the opposite way comparing to short exposure. We observed strong increase of NRF2 protein level, reorganization of mitochondrial network and activation of the mitochondrial biogenesis process. CONCLUSION: Comparison of the effects of TPMs from 3R4F and from THS 2.2 revealed, that similar extent of alterations in mitochondrial dynamics and biogenesis is observed at 7.5 µg/mL of 3R4F TPM and 150 µg/mL of THS 2.2 TPM. 7 days exposure to the investigated components of cigarette smoke evoke mitochondrial stress, while upon chronic, 12 weeks exposure the hallmarks of cellular adaptation to the stressor were visible. The results also suggest that mitochondrial stress signaling is involved in the process of cellular adaptation under conditions of chronic stress caused by 3R4F and high concentration of THS 2.2.


Assuntos
Aerossóis/química , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Material Particulado/toxicidade , Cálcio/metabolismo , Linhagem Celular , Corantes Fluorescentes/química , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Confocal , Mitocôndrias/efeitos dos fármacos , Material Particulado/química , Fumaça/efeitos adversos , Fatores de Tempo , Produtos do Tabaco/análise
3.
J Bioenerg Biomembr ; 51(4): 259-276, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31197632

RESUMO

Mitochondria are multifunctional and dynamic organelles deeply integrated into cellular physiology and metabolism. Disturbances in mitochondrial function are involved in several disorders such as neurodegeneration, cardiovascular diseases, metabolic diseases, and also in the aging process. Nicotine is a natural alkaloid present in the tobacco plant which has been well studied as a constituent of cigarette smoke. It has also been reported to influence mitochondrial function both in vitro and in vivo. This review presents a comprehensive overview of the present knowledge of nicotine action on mitochondrial function. Observed effects of nicotine exposure on the mitochondrial respiratory chain, oxidative stress, calcium homeostasis, mitochondrial dynamics, biogenesis, and mitophagy are discussed, considering the context of the experimental design. The potential action of nicotine on cellular adaptation and cell survival is also examined through its interaction with mitochondria. Although a large number of studies have demonstrated the impact of nicotine on various mitochondrial activities, elucidating its mechanism of action requires further investigation.


Assuntos
Fumar Cigarros/metabolismo , Mitocôndrias/metabolismo , Nicotina , Animais , Cálcio/metabolismo , Fumar Cigarros/patologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/patologia , Mitofagia/efeitos dos fármacos , Nicotina/efeitos adversos , Nicotina/farmacocinética , Estresse Oxidativo/efeitos dos fármacos
4.
Am J Physiol Lung Cell Mol Physiol ; 310(4): L377-86, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26719146

RESUMO

Recent data indicate a role for airway epithelial necroptosis, a regulated form of necrosis, and the associated release of damage-associated molecular patterns (DAMPs) in the development of chronic obstructive pulmonary disease (COPD). DAMPs can activate pattern recognition receptors (PRRs), triggering innate immune responses. We hypothesized that cigarette smoke (CS)-induced epithelial necroptosis and DAMP release initiate airway inflammation in COPD. Human bronchial epithelial BEAS-2B cells were exposed to cigarette smoke extract (CSE), and necrotic cell death (membrane integrity by propidium iodide staining) and DAMP release (i.e., double-stranded DNA, high-mobility group box 1, heat shock protein 70, mitochondrial DNA, ATP) were analyzed. Subsequently, BEAS-2B cells were exposed to DAMP-containing supernatant of CS-induced necrotic cells, and the release of proinflammatory mediators [C-X-C motif ligand 8 (CXCL-8), IL-6] was evaluated. Furthermore, mice were exposed to CS in the presence and absence of the necroptosis inhibitor necrostatin-1, and levels of DAMPs and inflammatory cell numbers were determined in bronchoalveolar lavage fluid. CSE induced a significant increase in the percentage of necrotic cells and DAMP release in BEAS-2B cells. Stimulation of BEAS-2B cells with supernatant of CS-induced necrotic cells induced a significant increase in the release of CXCL8 and IL-6, in a myeloid differentiation primary response gene 88-dependent fashion. In mice, exposure of CS increased the levels of DAMPs and numbers of neutrophils in bronchoalveolar lavage fluid, which was statistically reduced upon treatment with necrostatin-1. Together, we showed that CS exposure induces necrosis of bronchial epithelial cells and subsequent DAMP release in vitro, inducing the production of proinflammatory cytokines. In vivo, CS exposure induces neutrophilic airway inflammation that is sensitive to necroptosis inhibition.


Assuntos
Células Epiteliais/efeitos dos fármacos , Pulmão/metabolismo , Neutrófilos/metabolismo , Nicotiana/efeitos adversos , Fumaça/efeitos adversos , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Humanos , Inflamação/metabolismo , Camundongos , Necrose/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumar/efeitos adversos , Fumar/metabolismo
5.
Am J Respir Cell Mol Biol ; 52(5): 554-62, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25192219

RESUMO

Cigarette smoking, the major causative factor for the development of chronic obstructive pulmonary disease, is associated with neutrophilic airway inflammation. Cigarette smoke (CS) exposure can induce a switch from apoptotic to necrotic cell death in airway epithelium. Therefore, we hypothesized that CS promotes neutrophil necrosis with subsequent release of damage-associated molecular patterns (DAMPs), including high mobility group box 1 (HMGB1), alarming the innate immune system. We studied the effect of smoking two cigarettes on sputum neutrophils in healthy individuals and of 5-day CS or air exposure on neutrophil counts, myeloperoxidase, and HMGB1 levels in bronchoalveolar lavage fluid of BALB/c mice. In human peripheral blood neutrophils, mitochondrial membrane potential, apoptosis/necrosis markers, caspase activity, and DAMP release were studied after CS exposure. Finally, we assessed the effect of neutrophil-derived supernatants on the release of chemoattractant CXCL8 in normal human bronchial epithelial cells. Cigarette smoking caused a significant decrease in sputum neutrophil numbers after 3 hours. In mice, neutrophil counts were significantly increased 16 hours after repeated CS exposure but reduced 2 hours after an additional exposure. In vitro, CS induced necrotic neutrophil cell death, as indicated by mitochondrial dysfunction, inhibition of apoptosis, and DAMP release. Supernatants from CS-treated neutrophils significantly increased the release of CXCL8 in normal human bronchial epithelial cells. Together, these observations show, for the first time, that CS exposure induces neutrophil necrosis, leading to DAMP release, which may amplify CS-induced airway inflammation by promoting airway epithelial proinflammatory responses.


Assuntos
Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Neutrófilos/metabolismo , Pneumonia/etiologia , Fumaça/efeitos adversos , Fumar/efeitos adversos , Animais , Apoptose , Líquido da Lavagem Broncoalveolar/imunologia , Células Cultivadas , Estudos Cross-Over , Feminino , Proteína HMGB1/metabolismo , Humanos , Imunidade Inata , Mediadores da Inflamação/imunologia , Exposição por Inalação/efeitos adversos , Interleucina-8/metabolismo , Pulmão/imunologia , Pulmão/patologia , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Necrose , Neutrófilos/imunologia , Peroxidase/metabolismo , Fenótipo , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Transdução de Sinais , Fumar/imunologia , Fumar/metabolismo , Escarro/imunologia , Escarro/metabolismo , Fatores de Tempo
6.
Respir Res ; 14: 45, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23594194

RESUMO

BACKGROUND: Cigarette smoking (CS) is the most important risk factor for COPD, which is associated with neutrophilic airway inflammation. We hypothesize, that highly reactive aldehydes are critical for CS-induced neutrophilic airway inflammation. METHODS: BALB/c mice were exposed to CS, water filtered CS (WF-CS) or air for 5 days. Levels of total particulate matter (TPM) and aldehydes in CS and WF-CS were measured. Six hours after the last exposure, inflammatory cells and cytokine levels were measured in lung tissue and bronchoalveolar lavage fluid (BALF). Furthermore, Beas-2b bronchial epithelial cells were exposed to CS extract (CSE) or WF-CS extract (WF-CSE) in the absence or presence of the aldehyde acrolein and IL-8 production was measured after 24 hrs. RESULTS: Compared to CS, in WF-CS strongly decreased (CS; 271.1 ± 41.5 µM, WF-CS; 58.5 ± 8.2 µM) levels of aldehydes were present whereas levels of TPM were only slightly reduced (CS; 20.78 ± 0.59 mg, WF-CS; 16.38 ± 0.36 mg). The numbers of mononuclear cells in BALF (p<0.01) and lung tissue (p<0.01) were significantly increased in the CS- and WF-CS-exposed mice compared to air control mice. Interestingly, the numbers of neutrophils (p<0.001) in BALF and neutrophils and eosinophils (p<0.05) in lung tissue were significantly increased in the CS-exposed but not in WF-CS-exposed mice as compared to air control mice. Levels of the neutrophil and eosinophil chemoattractants KC, MCP-1, MIP-1α and IL-5 were all significantly increased in lung tissue from CS-exposed mice compared to both WF-CS-exposed and air control mice. Interestingly, depletion of aldehydes in WF-CS extract significantly reduced IL-8 production in Beas-2b as compared to CSE, which could be restored by the aldehyde acrolein. CONCLUSION: Aldehydes present in CS play a critical role in inflammatory cytokine production and neutrophilic- but not mononuclear airway inflammation.


Assuntos
Aldeídos/toxicidade , Citocinas/imunologia , Ativação de Neutrófilo/imunologia , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Fumar/efeitos adversos , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Ativação de Neutrófilo/efeitos dos fármacos
7.
Exp Physiol ; 98(1): 316-25, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22848082

RESUMO

Cigarette smoking is the major risk factor for chronic obstructive pulmonary disease. Cigarette smoke (CS) causes oxidative stress and severe damage to proteins in the lungs. One of the main systems to protect cells from the accumulation of damaged proteins is the ubiquitin-proteasome pathway. In the present study, we aimed to find out whether exposure of alveolar epithelial cells to CS induces an endoplasmic reticulum (ER) stress response by accumulation of damaged proteins that are inefficiently degraded by the proteasomes. The hypothesis was tested in a human alveolar epithelial cell line (A549) exposed to gas-phase CS. Exposure to gas-phase CS for 5 min caused an increase in the amount of ubiquitin-protein conjugates within 4 h. Cigarette smoke exposure also induced the ER stress response marker eIF2α, followed by a significant reduction of nascent protein synthesis and increase in the level of free intracellular amino acids. Moreover, CS exposure significantly reduced all three proteasomal activities (caspase-, trypsin- and chymotrypsin-like activity) within 4 h, which was still present after 24 h. It can be concluded that gas-phase CS induces ER stress in A549 alveolar epithelial cells, leading to inadequate protein turnover caused by an accumulation of damaged proteins, reduction in nascent protein synthesis and inhibition of the proteasome. We suggest that prolonged ER stress may lead to excessive cell death with disruption of the epithelial barrier, contributing to development of chronic obstructive pulmonary disease.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Nicotiana , Complexo de Endopeptidases do Proteassoma/metabolismo , Fumaça , Células Epiteliais Alveolares/metabolismo , Linhagem Celular , Humanos , Doença Pulmonar Obstrutiva Crônica/etiologia , Ubiquitina/metabolismo
8.
Food Chem Toxicol ; 175: 113708, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36889430

RESUMO

Homemade e-liquids and power-adjustable vaping devices may carry higher risks than commercial formulations and fixed-power devices. This study used human macrophage-like and bronchial epithelial (NHBE) cell cultures to investigate toxicity of homemade e-liquids containing propylene glycol and vegetable glycerin (PG/VG), nicotine, vitamin E acetate (VEA), medium-chain fatty acids (MCFAs), phytol, and cannabidiol (CBD). SmallAir™ organotypic epithelial cultures were exposed to aerosols generated at different power settings (10-50 W). Carbonyl levels were measured, and endpoints reflecting epithelial function (ciliary beating frequency [CBF]), integrity (transepithelial electrical resistance [TEER]), and structure (histology) were investigated. Treatment with nicotine or VEA alone or with PG/VG did not impact cell viability. CBD, phytol, and lauric acid caused cytotoxicity in both culture systems and increased lipid-laden macrophages. Exposure of SmallAir™ organotypic cultures to CBD-containing aerosols resulted in tissue injury and loss of CBF and TEER, while PG/VG alone or with nicotine or VEA did not. Aerosols generated with higher power settings had higher carbonyl concentrations. In conclusion, the presence and concentration of certain chemicals and device power may induce cytotoxicity in vitro. These results raise concerns that power-adjustable devices may generate toxic compounds and suggest that toxicity assessments should be conducted for both e-liquid formulations and their aerosols.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Humanos , Nicotina/toxicidade , Nicotina/química , Brônquios , Verduras , Aerossóis/toxicidade , Glicerol/química , Propilenoglicol/química
9.
Biochem Biophys Rep ; 29: 101187, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34931176

RESUMO

Iota-carrageenan (IC) nasal spray, a medical device approved for treating respiratory viral infections, has previously been shown to inhibit the ability of a variety of respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to enter and replicate in the cell by interfering with the virus binding to the cell surface. The aim of this study was to further investigate the efficacy and safety of IC in SARS-CoV-2 infection in advanced in vitro models of the human respiratory epithelium, the primary target and entry port for SARS-CoV-2. We extended the in vitro safety assessment of nebulized IC in a 3-dimensional model of reconstituted human bronchial epithelium, and we demonstrated the efficacy of IC in protecting reconstituted nasal epithelium against viral infection and replication of a patient-derived SARS-CoV-2 strain. The results obtained from these two advanced models of human respiratory tract epithelia confirm previous findings from in vitro SARS-CoV-2 infection assays and demonstrate that topically applied IC can effectively prevent SARS-CoV-2 infection and replication. Moreover, the absence of toxicity and functional and structural impairment of the mucociliary epithelium demonstrates that the nebulized IC is well tolerated.

10.
AAPS J ; 24(1): 33, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132508

RESUMO

In vitro screening for pharmacological activity of existing drugs showed chloroquine and hydroxychloroquine to be effective against severe acute respiratory syndrome coronavirus 2. Oral administration of these compounds to obtain desired pulmonary exposures resulted in dose-limiting systemic toxicity in humans. However, pulmonary drug delivery enables direct and rapid administration to obtain higher local tissue concentrations in target tissue. In this work, inhalable formulations for thermal aerosolization of chloroquine and hydroxychloroquine were developed, and their physicochemical properties were characterized. Thermal aerosolization of 40 mg/mL chloroquine and 100 mg/mL hydroxychloroquine formulations delivered respirable aerosol particle sizes with 0.15 and 0.33 mg per 55 mL puff, respectively. In vitro toxicity was evaluated by exposing primary human bronchial epithelial cells to aerosol generated from Vitrocell. An in vitro exposure to 7.24 µg of chloroquine or 7.99 µg hydroxychloroquine showed no significant changes in cilia beating, transepithelial electrical resistance, and cell viability. The pharmacokinetics of inhaled aerosols was predicted by developing a physiologically based pharmacokinetic model that included a detailed species-specific respiratory tract physiology and lysosomal trapping. Based on the model predictions, inhaling emitted doses comprising 1.5 mg of chloroquine or 3.3 mg hydroxychloroquine three times a day may yield therapeutically effective concentrations in the lung. Inhalation of higher doses further increased effective concentrations in the lung while maintaining lower systemic concentrations. Given the theoretically favorable risk/benefit ratio, the clinical significance for pulmonary delivery of aerosolized chloroquine and hydroxychloroquine to treat COVID-19 needs to be established in rigorous safety and efficacy studies. Graphical abstract.


Assuntos
Antimaláricos/administração & dosagem , Tratamento Farmacológico da COVID-19 , Cloroquina/administração & dosagem , Hidroxicloroquina/administração & dosagem , Modelos Químicos , Administração por Inalação , Animais , Antimaláricos/farmacocinética , Antimaláricos/toxicidade , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Humanos , Hidroxicloroquina/farmacocinética , Hidroxicloroquina/toxicidade , Masculino , Camundongos , Pessoa de Meia-Idade , Ratos
11.
Front Pharmacol ; 12: 669370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079463

RESUMO

Monoamine oxidases (MAO) are a valuable class of mitochondrial enzymes with a critical role in neuromodulation. In this study, we investigated the effect of natural MAO inhibitors on novel environment-induced anxiety by using the zebrafish novel tank test (NTT). Because zebrafish spend more time at the bottom of the tank when they are anxious, anxiolytic compounds increase the time zebrafish spend at the top of the tank and vice versa. Using this paradigm, we found that harmane, norharmane, and 1,2,3,4-tetrahydroisoquinoline (TIQ) induce anxiolytic-like effects in zebrafish, causing them to spend more time at the top of the test tank and less time at the bottom. 2,3,6-trimethyl-1,4-naphtoquinone (TMN) induced an interesting mix of both anxiolytic- and anxiogenic-like effects during the first and second halves of the test, respectively. TIQ was unique in having no observable effect on general movement. Similarly, a reference MAO inhibitor clorgyline-but not pargyline-increased the time spent at the top in a concentration-dependent manner. We also demonstrated that the brain bioavailability of these compounds are high based on the ex vivo bioavailability assay and in silico prediction models, which support the notion that the observed effects on anxiety-like behavior in zebrafish were most likely due to the direct effect of these compounds in the brain. This study is the first investigation to demonstrate the anxiolytic-like effects of MAO inhibitors on novel environment-induced anxiety in zebrafish.

12.
Food Chem Toxicol ; 154: 112316, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34089800

RESUMO

Mitochondria are among the first responders to various stress factors that challenge cell and tissue homeostasis. Various plant alkaloids have been investigated for their capacity to modulate mitochondrial activities. In this study, we used isolated mitochondria from mouse brain and liver tissues to assess nicotine, anatabine and anabasine, three alkaloids found in tobacco plant, for potential modulatory activity on mitochondrial bioenergetics parameters. All alkaloids decreased basal oxygen consumption of mouse brain mitochondria in a dose-dependent manner without any effect on the ADP-stimulated respiration. None of the alkaloids, at 1 nM or 1.25 µM concentrations, influenced the maximal rate of swelling of brain mitochondria. In contrast to brain mitochondria, 1.25 µM anatabine, anabasine and nicotine increased maximal rate of swelling of liver mitochondria suggesting a toxic effect. Only at 1 mM concentration, anatabine slowed down the maximal rate of Ca2+-induced swelling and increased the time needed to reach the maximal rate of swelling. The observed mitochondrial bioenergetic effects are probably mediated through a pathway independent of nicotinic acetylcholine receptors, as quantitative proteomic analysis could not confirm their expression in pure mitochondrial fractions isolated from mouse brain tissue.


Assuntos
Alcaloides/toxicidade , Mitocôndrias/efeitos dos fármacos , Plantas/química , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Metabolismo Energético/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Proteômica , Receptores Nicotínicos/metabolismo
13.
Respir Res ; 11: 48, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20429916

RESUMO

BACKGROUND: A major feature of chronic obstructive pulmonary disease (COPD) is airway remodelling, which includes an increased airway smooth muscle (ASM) mass. The mechanisms underlying ASM remodelling in COPD are currently unknown. We hypothesized that cigarette smoke (CS) and/or lipopolysaccharide (LPS), a major constituent of CS, organic dust and gram-negative bacteria, that may be involved in recurrent airway infections and exacerbations in COPD patients, would induce phenotype changes of ASM. METHODS: To this aim, using cultured bovine tracheal smooth muscle (BTSM) cells and tissue, we investigated the direct effects of CS extract (CSE) and LPS on ASM proliferation and contractility. RESULTS: Both CSE and LPS induced a profound and concentration-dependent increase in DNA synthesis in BTSM cells. CSE and LPS also induced a significant increase in BTSM cell number, which was associated with increased cyclin D1 expression and dependent on activation of ERK 1/2 and p38 MAP kinase. Consistent with a shift to a more proliferative phenotype, prolonged treatment of BTSM strips with CSE or LPS significantly decreased maximal methacholine- and KCl-induced contraction. CONCLUSIONS: Direct exposure of ASM to CSE or LPS causes the induction of a proliferative, hypocontractile ASM phenotype, which may be involved in airway remodelling in COPD.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fumaça/efeitos adversos , Fumar/efeitos adversos , Traqueia/efeitos dos fármacos , Animais , Bovinos , Células Cultivadas , Ciclina D1/metabolismo , Replicação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Flavonoides/farmacologia , Imidazóis/farmacologia , Contração Isométrica/efeitos dos fármacos , Cloreto de Metacolina/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Liso/patologia , Miócitos de Músculo Liso/patologia , Fenótipo , Fosforilação , Cloreto de Potássio/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Pirimidinas/farmacologia , Fatores de Tempo , Técnicas de Cultura de Tecidos , Traqueia/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Toxicol Rep ; 7: 1187-1206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32995294

RESUMO

Cigarette smoking causes major preventable diseases, morbidity, and mortality worldwide. Smoking cessation and prevention of smoking initiation are the preferred means for reducing these risks. Less harmful tobacco products, termed modified-risk tobacco products (MRTP), are being developed as a potential alternative for current adult smokers who would otherwise continue smoking. According to a regulatory framework issued by the US Food and Drug Administration, a manufacturer must provide comprehensive scientific evidence that the product significantly reduces harm and the risk of tobacco-related diseases, in order to obtain marketing authorization for a new MRTP. For new tobacco products similar to an already approved predicate product, the FDA has foreseen a simplified procedure for assessing "substantial equivalence". In this article, we present a use case that bridges the nonclinical evidence from previous studies demonstrating the relatively reduced harm potential of two heat-not-burn products based on different tobacco heating principles. The nonclinical evidence was collected along a "causal chain of events leading to disease" (CELSD) to systematically follow the consequences of reduced exposure to toxicants (relative to cigarette smoke) through increasing levels of biological complexity up to disease manifestation in animal models of human disease. This approach leverages the principles of systems biology and toxicology as a basis for further extrapolation to human studies. The experimental results demonstrate a similarly reduced impact of both products on apical and molecular endpoints, no novel effects not seen with cigarette smoke exposure, and an effect of switching from cigarettes to either MRTP that is comparable to that of complete smoking cessation. Ideally, a subset of representative assays from the presented sequence along the CELSD could be sufficient for predicting similarity or substantial equivalence in the nonclinical impact of novel products; this would require further validation, for which the present use case could serve as a starting point.

15.
Am J Physiol Lung Cell Mol Physiol ; 297(1): L109-14, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19411310

RESUMO

Reactive oxygen species (ROS) present in cigarette smoke (CS) are thought to contribute to the development of COPD. Although CS-ROS can hardly enter airway epithelial cells, and certainly not the circulation, systemic levels of ROS have been found to be elevated in COPD patients. We hypothesize that lipophilic components present in CS can enter airway epithelial cells and increase intracellular ROS production by disturbing mitochondrial function. Different airway epithelial cells were exposed to CS extract (CSE), hexane-treated CSE (CSE without lipophilic components), gaseous-phase CS, and water-filtered CS (gaseous-phase CS without ROS). Mitochondrial membrane potential (Deltapsi(m)) and ATP levels were assessed using the bronchial epithelial cell line Beas-2b. ROS generation measured directly by DCF fluorescence and indirectly by measuring free thiol groups (-SH) upon exposure to CS was assessed using lung alveolar epithelial cells devoid of functional mitochondria (A549-rho0), with normal A549 cells serving as controls. In Beas-2b cells, CSE (4 h) caused a dose-dependent decrease in Deltapsi(m) and ATP levels, whereas hexane-treated CSE did not. DCF fluorescence in A549 cells increased in response to CSE, whereas this was not the case in A549-rho0 cells. Exposure of A549 cells to CS resulted in a rapid decrease in free -SH, whereas exposure to ROS-depleted CS only resulted in a delayed decrease. This delayed decrease was less pronounced in A549-rho0 cells. Lipophilic components in CS disturb mitochondrial function, which contributes to increased intracellular generation of ROS. Our results are of importance in understanding the systemic effects of smoking observed in patients with COPD.


Assuntos
Células Epiteliais/metabolismo , Lipídeos/química , Pulmão/citologia , Mitocôndrias/metabolismo , Nicotiana/química , Espécies Reativas de Oxigênio/metabolismo , Fumaça , Linhagem Celular , Células Epiteliais/citologia , Filtração , Gases , Humanos , Oxirredução , Solubilidade , Soluções , Compostos de Sulfidrila/metabolismo , Água
16.
Toxicol Rep ; 6: 1206-1215, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31768332

RESUMO

The adverse effects of cigarette smoking are well documented, and the two main strategies for reducing smoking prevalence are prevention of smoking initiation and promotion of smoking cessation. More recently, a third and complementary avenue, tobacco harm reduction has emerged, which is aimed to reduce the burden of smoking-related diseases. This has been enabled by the development of novel products such as electronic cigarettes (e-cigarettes) and heated tobacco products, designed to deliver nicotine with significantly reduced levels of the toxicants that are emitted by cigarettes. Several potential modified risk tobacco products (pMRTP) have been reported to emit significantly less toxicants than cigarettes and significantly reduce toxicant exposure in smokers who switch completely to such products. These are two prerequisites for pMRTPs to reduce harm and the risk of smoking-related disease. However, concerns remain regarding the addictive nature of these products. Smoking addiction is a complex phenomenon involving multiple pharmacological and non-pharmacological factors. Although the main pharmacological substance associated with smoking addiction is nicotine, accumulating evidence suggests that nicotine mostly acts as a primary reinforcer and that other factors are involved in establishing smoking addiction. Inhibition of monoamine oxidases (MAO)-mammalian flavoenzymes with a central role in neurotransmitter metabolism-has also been suggested to be involved in this process. Therefore, we aimed to comparatively investigate the ability of several types of pMRTPs and cigarette smoke (3R4F) to inhibit MAO activity. The results showed that the heated tobacco product Tobacco Heating System (THS) 2.2 and the MESH 1.1 e-cigarette possessed no MAO inhibitory activity while 3R4F significantly inhibits the levels of MAO activity (3R4F MAO-A and B; > 2 µM nicotine). Snus products have similar inhibition profiles as 3R4F but for larger nicotine concentrations (snus MAO-A; ∼68-fold, snus MAO-B; ∼23-fold higher compared to 3R4F). These observations were confirmed by analytical datasets of potential MAO inhibitors emitted by these products. In conclusion, we have demonstrated that specific pMRTPs, namely THS 2.2 and MESH 1.1, have a significantly lower MAO-inhibitory activity than 3R4F. These findings provide a basis for further investigation of the role of MAO inhibitors in cigarette addiction as well as the implications of the findings for abuse liability of pMRTPs in comparison with cigarettes.

17.
Toxicol In Vitro ; 50: 95-108, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29524472

RESUMO

Cigarette smoking is the leading cause of preventable lung cancer (LC). Reduction of harmful constituents by heating rather than combusting tobacco may have the potential to reduce the risk of LC. We evaluated functional and molecular changes in human bronchial epithelial BEAS-2B cells following a 12-week exposure to total particulate matter (TPM) from the aerosol of a candidate modified-risk tobacco product (cMRTP) in comparison with those following exposure to TPM from the 3R4F reference cigarette. Endpoints linked to lung carcinogenesis were assessed. Four-week 3R4F TPM exposure resulted in crisis and epithelial to mesenchymal transition (EMT) accompanied by decreased barrier function and disrupted cell-to-cell contacts. By week eight, cells regained E-cadherin expression, suggesting that EMT was reversible. Increased levels of inflammatory mediators were noted in cells treated to 3R4F TPM but not in cells treated to the same or a five-fold higher concentration of cMRTP TPM. A 20-fold higher concentration of cMRTP TPM increased oxidative stress and DNA damage and caused reversible EMT. Anchorage-independent growth was observed in cells treated to 3R4F or a high concentration of cMRTP TPM. 3R4F TPM-derived clones were invasive, while cMRTP TPM-derived clones were not. Long-term exposure to TPM from the cMRTP had a lower biological impact on BEAS-2B cells compared with that of exposure to TPM from 3R4F.


Assuntos
Células Epiteliais/efeitos dos fármacos , Material Particulado/toxicidade , Produtos do Tabaco/toxicidade , Antígenos CD , Brônquios/citologia , Caderinas/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Temperatura Alta , Humanos , Transcriptoma/efeitos dos fármacos
18.
Food Chem Toxicol ; 120: 390-406, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30026091

RESUMO

Cigarette smoking causes cardiovascular diseases. Heating tobacco instead of burning it reduces the amount of toxic compounds in the aerosol and may exert a reduced impact on health compared with cigarette smoke. Aqueous extract from the aerosol of a potential modified risk tobacco product, the Carbon Heated Tobacco Product (CHTP) 1.2, was compared in vitro with aqueous extract from the smoke of a 3R4F reference cigarette for its impact on the adhesion of monocytic cells to artery endothelial cells. Human coronary artery endothelial cells (HCAEC) were treated for 4 h with conditioned media from human monocytic Mono Mac 6 (MM6) cells exposed to CHTP1.2 or 3R4F extracts for 2 h or directly with those extracts freshly generated. In vitro monocyte-endothelial cell adhesion was measured concomitantly with inflammatory, oxidative stress, cytotoxicity, and death markers. Furthermore, transcriptomics analyses enabled to quantify the level of perturbation in HCAECs, and provide biological interpretation for the underlying molecular changes following exposure to 3R4F or CHTP1.2 extract. Our systems toxicology study demonstrated that approximately 10-15-fold higher concentrations of the CHTP 1.2 aerosol extract were needed to elicit similar effects as the 3R4F smoke extract on cardiovascular disease-relevant inflammation and cytotoxicity-related mechanisms and markers investigated in vitro.


Assuntos
Adesão Celular/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Nicotiana/química , Extratos Vegetais/toxicidade , Vasculite/induzido quimicamente , Células Cultivadas , Vasos Coronários/citologia , Endotélio Vascular/citologia , Humanos , Monócitos/citologia , Fumaça/efeitos adversos , Testes de Toxicidade
19.
Food Chem Toxicol ; 115: 1-12, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29448087

RESUMO

Mitochondrial dysfunction caused by cigarette smoke is involved in the oxidative stress-induced pathology of airway diseases. Reducing the levels of harmful and potentially harmful constituents by heating rather than combusting tobacco may reduce mitochondrial changes that contribute to oxidative stress and cell damage. We evaluated mitochondrial function and oxidative stress in human bronchial epithelial cells (BEAS 2B) following 1- and 12-week exposures to total particulate matter (TPM) from the aerosol of a candidate modified-risk tobacco product, the Tobacco Heating System 2.2 (THS2.2), in comparison with TPM from the 3R4F reference cigarette. After 1-week exposure, 3R4F TPM had a strong inhibitory effect on mitochondrial basal and maximal oxygen consumption rates compared to TPM from THS2.2. Alterations in oxidative phosphorylation were accompanied by increased mitochondrial superoxide levels and increased levels of oxidatively damaged proteins in cells exposed to 7.5 µg/mL of 3R4F TPM or 150 µg/mL of THS2.2 TPM, while cytosolic levels of reactive oxygen species were not affected. In contrast, the 12-week exposure indicated adaptation of BEAS-2B cells to long-term stress. Together, the findings indicate that 3R4F TPM had a stronger effect on oxidative phosphorylation, gene expression and proteins involved in oxidative stress than TPM from the candidate modified-risk tobacco product THS2.2.


Assuntos
Brônquios/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Nicotiana/efeitos adversos , Material Particulado/efeitos adversos , Produtos do Tabaco/efeitos adversos , Brônquios/citologia , Brônquios/metabolismo , Linhagem Celular , Células Epiteliais/citologia , Humanos , Exposição por Inalação , Mitocôndrias/genética , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fumaça/efeitos adversos , Fumaça/análise
20.
FEBS J ; 274(12): 3003-12, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17509081

RESUMO

Cyclosporin A induces closure of the mitochondrial permeability transition pore. We aimed to investigate whether this closure results in concomitant increases in mitochondrial membrane potential (DeltaPsim) and the production of reactive oxygen species. Fluorescent probes were used to assess DeltaPsim (JC-1, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolyl-carbocyanine iodide), reactive oxygen species [DCF, 5- (and 6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester] and [Ca2+][Fluo-3, glycine N-[4-[6-[(acetyloxy)methoxy]-2,7-dichloro-3-oxo-3H-xanthen-9-yl]-2-[2-[2-[bis[2-[(acetyloxy)methoxy]-2-oxyethyl]amino]-5-methylphenoxy]ethoxy]phenyl]-N-[2-[(acetyloxy)methoxy]-2-oxyethyl]-(acetyloxy)methyl ester] in human kidney cells (HK-2 cells) and in a line of human small cell carcinoma cells (GLC4 cells), because these do not express cyclosporin A-sensitive P-glycoprotein. We used transfected GLC4 cells expressing P-glycoprotein as control for GLC4 cells. NIM811 (N-methyl-4-isoleucine-cyclosporin) and PSC833 (SDZ-PSC833) were applied as selective mitochondrial permeability transition pore and P-glycoprotein blockers, respectively. To study the effect of cyclosporin A on mitochondrial function, we isolated mitochondria from fresh pig livers. Cyclosporin A and PSC833 induced a more than two-fold increase in JC-1 fluorescence in HK-2 cells, whereas NIM811 had no effect. None of the three substances induced a significant increase in JC-1 fluorescence in GLC4 cells. Despite this, cyclosporin A, NIM811 and PSC833 induced a 1.5-fold increase in DCF fluorescence (P<0.05) and a two-fold increase in Fluo-3 fluorescence (P<0.05). Studies in isolated mitochondria showed that blockage of mitochondrial permeability transition pores by cyclosporin A affected neither DeltaPsim, ATP synthesis, nor respiration rate. The mitochondrial permeability transition pore blockers cyclosporin A and NIM811, but also the non-mitochondrial permeability transition pore blocker PSC833, induced comparable degrees of reactive oxygen species production and cytosolic [Ca2+]. Neither mitochondria, effects on P-glycoprotein nor inhibition of calcineurin therefore play a role in cyclosporin A-induced oxidative stress and disturbed Ca2+ homeostasis.


Assuntos
Ciclosporina/farmacologia , Imunossupressores/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Estresse Oxidativo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Compostos de Anilina , Animais , Benzimidazóis , Cálcio/metabolismo , Carbocianinas , Linhagem Celular , Citoplasma/metabolismo , Fluoresceínas , Corantes Fluorescentes , Humanos , Técnicas In Vitro , Mitocôndrias Hepáticas/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Membranas Mitocondriais/fisiologia , Poro de Transição de Permeabilidade Mitocondrial , Espécies Reativas de Oxigênio/metabolismo , Suínos , Xantenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA