Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
PLoS Biol ; 21(12): e3002397, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38051702

RESUMO

Since they emerged approximately 125 million years ago, flowering plants have evolved to dominate the terrestrial landscape and survive in the most inhospitable environments on earth. At their core, these adaptations have been shaped by changes in numerous, interconnected pathways and genes that collectively give rise to emergent biological phenomena. Linking gene expression to morphological outcomes remains a grand challenge in biology, and new approaches are needed to begin to address this gap. Here, we implemented topological data analysis (TDA) to summarize the high dimensionality and noisiness of gene expression data using lens functions that delineate plant tissue and stress responses. Using this framework, we created a topological representation of the shape of gene expression across plant evolution, development, and environment for the phylogenetically diverse flowering plants. The TDA-based Mapper graphs form a well-defined gradient of tissues from leaves to seeds, or from healthy to stressed samples, depending on the lens function. This suggests that there are distinct and conserved expression patterns across angiosperms that delineate different tissue types or responses to biotic and abiotic stresses. Genes that correlate with the tissue lens function are enriched in central processes such as photosynthetic, growth and development, housekeeping, or stress responses. Together, our results highlight the power of TDA for analyzing complex biological data and reveal a core expression backbone that defines plant form and function.


Assuntos
Magnoliopsida , Magnoliopsida/genética , Plantas/genética , Estresse Fisiológico/genética , Folhas de Planta/genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética
2.
Proc Natl Acad Sci U S A ; 120(10): e2217564120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36853942

RESUMO

The field of plant science has grown dramatically in the past two decades, but global disparities and systemic inequalities persist. Here, we analyzed ~300,000 papers published over the past two decades to quantify disparities across nations, genders, and taxonomy in the plant science literature. Our analyses reveal striking geographical biases-affluent nations dominate the publishing landscape and vast areas of the globe have virtually no footprint in the literature. Authors in Northern America are cited nearly twice as many times as authors based in Sub-Saharan Africa and Latin America, despite publishing in journals with similar impact factors. Gender imbalances are similarly stark and show remarkably little improvement over time. Some of the most affluent nations have extremely male biased publication records, despite supposed improvements in gender equality. In addition, we find that most studies focus on economically important crop and model species, and a wealth of biodiversity is underrepresented in the literature. Taken together, our analyses reveal a problematic system of publication, with persistent imbalances that poorly capture the global wealth of scientific knowledge and biological diversity. We conclude by highlighting disparities that can be addressed immediately and offer suggestions for long-term solutions to improve equity in the plant sciences.


Assuntos
Biodiversidade , Equidade de Gênero , Feminino , Masculino , Humanos , Geografia , Conhecimento , América do Norte
3.
Proc Natl Acad Sci U S A ; 120(10): e2216894120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848555

RESUMO

Drought tolerance is a highly complex trait controlled by numerous interconnected pathways with substantial variation within and across plant species. This complexity makes it difficult to distill individual genetic loci underlying tolerance, and to identify core or conserved drought-responsive pathways. Here, we collected drought physiology and gene expression datasets across diverse genotypes of the C4 cereals sorghum and maize and searched for signatures defining water-deficit responses. Differential gene expression identified few overlapping drought-associated genes across sorghum genotypes, but using a predictive modeling approach, we found a shared core drought response across development, genotype, and stress severity. Our model had similar robustness when applied to datasets in maize, reflecting a conserved drought response between sorghum and maize. The top predictors are enriched in functions associated with various abiotic stress-responsive pathways as well as core cellular functions. These conserved drought response genes were less likely to contain deleterious mutations than other gene sets, suggesting that core drought-responsive genes are under evolutionary and functional constraints. Our findings support a broad evolutionary conservation of drought responses in C4 grasses regardless of innate stress tolerance, which could have important implications for developing climate resilient cereals.


Assuntos
Sorghum , Zea mays , Zea mays/genética , Sorghum/genética , Secas , Grão Comestível/genética , Poaceae
4.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082155

RESUMO

Desiccation tolerance is an ancient and complex trait that spans all major lineages of life on earth. Although important in the evolution of land plants, the mechanisms that underlay this complex trait are poorly understood, especially for vegetative desiccation tolerance (VDT). The lack of suitable closely related plant models that offer a direct contrast between desiccation tolerance and sensitivity has hampered progress. We have assembled high-quality genomes for two closely related grasses, the desiccation-tolerant Sporobolus stapfianus and the desiccation-sensitive Sporobolus pyramidalis Both species are complex polyploids; S. stapfianus is primarily tetraploid, and S. pyramidalis is primarily hexaploid. S. pyramidalis undergoes a major transcriptome remodeling event during initial exposure to dehydration, while S. stapfianus has a muted early response, with peak remodeling during the transition between 1.5 and 1.0 grams of water (gH2O) g-1 dry weight (dw). Functionally, the dehydration transcriptome of S. stapfianus is unrelated to that for S. pyramidalis A comparative analysis of the transcriptomes of the hydrated controls for each species indicated that S. stapfianus is transcriptionally primed for desiccation. Cross-species comparative analyses indicated that VDT likely evolved from reprogramming of desiccation tolerance mechanisms that evolved in seeds and that the tolerance mechanism of S. stapfianus represents a recent evolution for VDT within the Chloridoideae. Orthogroup analyses of the significantly differentially abundant transcripts reconfirmed our present understanding of the response to dehydration, including the lack of an induction of senescence in resurrection angiosperms. The data also suggest that failure to maintain protein structure during dehydration is likely critical in rendering a plant desiccation sensitive.


Assuntos
Adaptação Fisiológica/genética , Poaceae/genética , Dessecação/métodos , Genômica/métodos , Folhas de Planta/genética , Proteínas de Plantas/genética , Água/metabolismo
5.
Plant J ; 114(2): 231-245, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36843450

RESUMO

Resurrection plants can survive prolonged life without water (anhydrobiosis) in regions with seasonal drying. This desiccation tolerance requires the coordination of numerous cellular processes across space and time, and individual plant tissues face unique constraints related to their function. Here, we analyzed the complex, octoploid genome of the model resurrection plant Craterostigma (C. plantagineum), and surveyed spatial and temporal expression dynamics to identify genetic elements underlying desiccation tolerance. Homeologous genes within the Craterostigma genome have divergent expression profiles, suggesting the subgenomes contribute differently to desiccation tolerance traits. The Craterostigma genome contains almost 200 tandemly duplicated early light-induced proteins, a hallmark trait of desiccation tolerance, with massive upregulation under water deficit. We identified a core network of desiccation-responsive genes across all tissues, but observed almost entirely unique expression dynamics in each tissue during recovery. Roots and leaves have differential responses related to light and photoprotection, autophagy and nutrient transport, reflecting their divergent functions. Our findings highlight a universal set of likely ancestral desiccation tolerance mechanisms to protect cellular macromolecules under anhydrobiosis, with secondary adaptations related to tissue function.


Assuntos
Craterostigma , Craterostigma/fisiologia , Dessecação , Água/metabolismo , Adaptação Fisiológica/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Genome Res ; 31(5): 799-810, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33863805

RESUMO

The members of the tribe Brassiceae share a whole-genome triplication (WGT), and one proposed model for its formation is a two-step pair of hybridizations producing hexaploid descendants. However, evidence for this model is incomplete, and the evolutionary and functional constraints that drove evolution after the hexaploidy are even less understood. Here, we report a new genome sequence of Crambe hispanica, a species sister to most sequenced Brassiceae. Using this new genome and three others that share the hexaploidy, we traced the history of gene loss after the WGT using the Polyploidy Orthology Inference Tool (POInT). We confirm the two-step formation model and infer that there was a significant temporal gap between those two allopolyploidizations, with about a third of the gene losses from the first two subgenomes occurring before the arrival of the third. We also, for the 90,000 individual genes in our study, make parental subgenome assignments, inferring, with measured uncertainty, from which of the progenitor genomes of the allohexaploidy each gene derives. We further show that each subgenome has a statistically distinguishable rate of homoeolog losses. There is little indication of functional distinction between the three subgenomes: the individual subgenomes show no patterns of functional enrichment, no excess of shared protein-protein or metabolic interactions between their members, and no biases in their likelihood of having experienced a recent selective sweep. We propose a "mix and match" model of allopolyploidy, in which subgenome origin drives homoeolog loss propensities but where genes from different subgenomes function together without difficulty.


Assuntos
Genoma , Poliploidia , Evolução Molecular , Genoma de Planta , Humanos , Hibridização Genética , Filogenia
7.
J Exp Bot ; 75(11): 3612-3623, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38511472

RESUMO

Desiccation tolerance evolved recurrently across diverse plant lineages to enable survival in water-limited conditions. Many resurrection plants are polyploid, and several groups have hypothesized that polyploidy contributed to the evolution of desiccation tolerance. However, due to the vast phylogenetic distance between resurrection plant lineages, the rarity of desiccation tolerance, and the prevalence of polyploidy in plants, this hypothesis has been difficult to test. Here, we surveyed natural variation in morphological, reproductive, and desiccation tolerance traits across several cytotypes of a single species to test for links between polyploidy and increased resilience. We sampled multiple natural populations of the resurrection grass Microchloa caffra across an environmental gradient ranging from mesic to xeric in South Africa. We describe two distinct ecotypes of M. caffra that occupy different extremes of the environmental gradient and exhibit consistent differences in ploidy, morphological, reproductive, and desiccation tolerance traits in both field and common growth conditions. Interestingly, plants with more polyploid genomes exhibited consistently higher recovery from desiccation, were less reproductive, and were larger than plants with smaller genomes and lower ploidy. These data indicate that selective pressures in increasingly xeric sites may play a role in maintaining and increasing desiccation tolerance and are mediated by changes in ploidy.


Assuntos
Poaceae , Poliploidia , Poaceae/genética , Poaceae/fisiologia , África do Sul , Dessecação , Adaptação Fisiológica/genética
8.
Plant Cell ; 33(11): 3391-3401, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34387354

RESUMO

Grasslands dominate the terrestrial landscape, and grasses have evolved complex and elegant strategies to overcome abiotic stresses. The C4 grasses are particularly stress tolerant and thrive in tropical and dry temperate ecosystems. Growing evidence suggests that the presence of C4 photosynthesis alone is insufficient to account for drought resilience in grasses, pointing to other adaptations as contributing to tolerance traits. The majority of grasses from the Chloridoideae subfamily are tolerant to drought, salt, and desiccation, making this subfamily a hub of resilience. Here, we discuss the evolutionary innovations that make C4 grasses so resilient, with a particular emphasis on grasses from the Chloridoideae (chloridoid) and Panicoideae (panicoid) subfamilies. We propose that a baseline level of resilience in chloridoid ancestors allowed them to colonize harsh habitats, and these environments drove selective pressure that enabled the repeated evolution of abiotic stress tolerance traits. Furthermore, we suggest that a lack of evolutionary access to stressful environments is partially responsible for the relatively poor stress resilience of major C4 crops compared to their wild relatives. We propose that chloridoid crops and the subfamily more broadly represent an untapped reservoir for improving resilience to drought and other abiotic stresses in cereals.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Carbono/metabolismo , Grão Comestível/fisiologia , Poaceae/fisiologia , Estresse Fisiológico
9.
Plant Cell ; 32(2): 336-351, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31852777

RESUMO

We exploited the broad host range of Fusarium virguliforme to identify differential fungal responses leading to either an endophytic or a pathogenic lifestyle during colonization of maize (Zea mays) and soybean (Glycine max), respectively. To provide a foundation to survey the transcriptomic landscape, we produced an improved de novo genome assembly and annotation of F. virguliforme using PacBio sequencing. Next, we conducted a high-resolution time course of F. virguliforme colonization and infection of both soybean, a symptomatic host, and maize, an asymptomatic host. Comparative transcriptomic analyses uncovered a nearly complete network rewiring, with less than 8% average gene coexpression module overlap upon colonizing the different plant hosts. Divergence of transcriptomes originating from host specific temporal induction genes is central to infection and colonization, including carbohydrate-active enzymes (CAZymes) and necrosis inducing effectors. Upregulation of Zn(II)-Cys6 transcription factors were uniquely induced in soybean at 2 d postinoculation, suggestive of enhanced pathogen virulence on soybean. In total, the data described herein suggest that F. virguliforme modulates divergent infection profiles through transcriptional plasticity.


Assuntos
Fusarium/genética , Fusarium/metabolismo , Glycine max/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Zea mays/metabolismo , Fusarium/crescimento & desenvolvimento , Fusarium/patogenicidade , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Genoma Fúngico , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Glycine max/microbiologia , Transcriptoma , Zea mays/microbiologia
10.
Plant Cell ; 32(1): 139-151, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31641024

RESUMO

The ability to predict traits from genome-wide sequence information (i.e., genomic prediction) has improved our understanding of the genetic basis of complex traits and transformed breeding practices. Transcriptome data may also be useful for genomic prediction. However, it remains unclear how well transcript levels can predict traits, particularly when traits are scored at different development stages. Using maize (Zea mays) genetic markers and transcript levels from seedlings to predict mature plant traits, we found that transcript and genetic marker models have similar performance. When the transcripts and genetic markers with the greatest weights (i.e., the most important) in those models were used in one joint model, performance increased. Furthermore, genetic markers important for predictions were not close to or identified as regulatory variants for important transcripts. These findings demonstrate that transcript levels are useful for predicting traits and that their predictive power is not simply due to genetic variation in the transcribed genomic regions. Finally, genetic marker models identified only 1 of 14 benchmark flowering-time genes, while transcript models identified 5. These data highlight that, in addition to being useful for genomic prediction, transcriptome data can provide a link between traits and variation that cannot be readily captured at the sequence level.


Assuntos
Genoma de Planta/genética , Herança Multifatorial , Transcriptoma , Zea mays/genética , Marcadores Genéticos , Variação Genética , Estudo de Associação Genômica Ampla , Genômica , Modelos Genéticos , Fenótipo
11.
Proc Natl Acad Sci U S A ; 117(18): 10079-10088, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32327609

RESUMO

Grasses are among the most resilient plants, and some can survive prolonged desiccation in semiarid regions with seasonal rainfall. However, the genetic elements that distinguish grasses that are sensitive versus tolerant to extreme drying are largely unknown. Here, we leveraged comparative genomic approaches with the desiccation-tolerant grass Eragrostis nindensis and the related desiccation-sensitive cereal Eragrostis tef to identify changes underlying desiccation tolerance. These analyses were extended across C4 grasses and cereals to identify broader evolutionary conservation and divergence. Across diverse genomic datasets, we identified changes in chromatin architecture, methylation, gene duplications, and expression dynamics related to desiccation in E. nindensis It was previously hypothesized that transcriptional rewiring of seed desiccation pathways confers vegetative desiccation tolerance. Here, we demonstrate that the majority of seed-dehydration-related genes showed similar expression patterns in leaves of both desiccation-tolerant and -sensitive species. However, we identified a small set of seed-related orthologs with expression specific to desiccation-tolerant species. This supports a broad role for seed-related genes, where many are involved in typical drought responses, with only a small subset of crucial genes specifically induced in desiccation-tolerant plants.


Assuntos
Adaptação Fisiológica/genética , Eragrostis/genética , Genômica , Poaceae/genética , Cromatina/genética , Metilação de DNA/genética , Dessecação , Secas , Eragrostis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Poaceae/crescimento & desenvolvimento , Estresse Fisiológico/genética , Água/metabolismo
12.
Plant J ; 105(1): 209-222, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33119914

RESUMO

Tolerance to prolonged water deficit occurs along a continuum in plants, with dehydration tolerance (DhT) and desiccation tolerance (DT) representing some of the most extreme adaptations to water scarcity. Although DhT and DT presumably vary among individuals of a single species, this variability remains largely unstudied. Here, we characterized expression dynamics throughout a dehydration-rehydration time-course in six diverse genotypes of the dioecious liverwort Marchantia inflexa. We identified classical signatures of stress response in M. inflexa, including major changes in transcripts related to metabolism, expression of LEA and ELIP genes, and evidence of cell wall remodeling. However, we detected very little temporal synchronization of these responses across different genotypes of M. inflexa, which may be related to genotypic variation among samples, constitutive expression of dehydration-associated transcripts, the sequestration of mRNAs in ribonucleoprotein partials prior to drying, or the lower tolerance of M. inflexa relative to most bryophytes studied to date. Our characterization of intraspecific variation in expression dynamics suggests that differences in the timing of transcriptional adjustments contribute to variation among genotypes, and that developmental differences impact the relative tolerance of meristematic and differentiated tissues. This work highlights the complexity and variability of water stress tolerance, and underscores the need for comparative studies that seek to characterize variation in DT and DhT.


Assuntos
Marchantia/fisiologia , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Desidratação , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas , Genótipo , Marchantia/genética , Marchantia/metabolismo , Filogenia
13.
PLoS Genet ; 15(6): e1008209, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31199791

RESUMO

Plants with facultative crassulacean acid metabolism (CAM) maximize performance through utilizing C3 or C4 photosynthesis under ideal conditions while temporally switching to CAM under water stress (drought). While genome-scale analyses of constitutive CAM plants suggest that time of day networks are shifted, or phased to the evening compared to C3, little is known for how the shift from C3 to CAM networks is modulated in drought induced CAM. Here we generate a draft genome for the drought-induced CAM-cycling species Sedum album. Through parallel sampling in well-watered (C3) and drought (CAM) conditions, we uncover a massive rewiring of time of day expression and a CAM and stress-specific network. The core circadian genes are expanded in S. album and under CAM induction, core clock genes either change phase or amplitude. While the core clock cis-elements are conserved in S. album, we uncover a set of novel CAM and stress specific cis-elements consistent with our finding of rewired co-expression networks. We identified shared elements between constitutive CAM and CAM-cycling species and expression patterns unique to CAM-cycling S. album. Together these results demonstrate that drought induced CAM-cycling photosynthesis evolved through the mobilization of a stress-specific, time of day network, and not solely the phasing of existing C3 networks. These results will inform efforts to engineer water use efficiency into crop plants for growth on marginal land.


Assuntos
Adaptação Fisiológica/genética , Fotossíntese/genética , Proteínas de Plantas/genética , Sedum/genética , Carbono/metabolismo , Ciclo do Carbono/genética , Dióxido de Carbono/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Proteínas de Plantas/metabolismo , Sedum/metabolismo , Água/química
14.
New Phytol ; 230(1): 354-371, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33280122

RESUMO

Allopolyploidisation merges evolutionarily distinct parental genomes (subgenomes) into a single nucleus. A frequent observation is that one subgenome is 'dominant' over the other subgenome, often being more highly expressed. Here, we 'replayed the evolutionary tape' with six isogenic resynthesised Brassica napus allopolyploid lines and investigated subgenome dominance patterns over the first 10 generations postpolyploidisation. We found that the same subgenome was consistently more dominantly expressed in all lines and generations and that >70% of biased gene pairs showed the same dominance patterns across all lines and an in silico hybrid of the parents. Gene network analyses indicated an enrichment for network interactions and several biological functions for the Brassica oleracea subgenome biased pairs, but no enrichment was identified for Brassica rapa subgenome biased pairs. Furthermore, DNA methylation differences between subgenomes mirrored the observed gene expression bias towards the dominant subgenome in all lines and generations. Many of these differences in gene expression and methylation were also found when comparing the progenitor genomes, suggesting that subgenome dominance is partly related to parental genome differences rather than just a byproduct of allopolyploidisation. These findings demonstrate that 'replaying the evolutionary tape' in an allopolyploid results in largely repeatable and predictable subgenome expression dominance patterns.


Assuntos
Brassica napus , Brassica rapa , Evolução Biológica , Brassica napus/genética , Brassica rapa/genética , Genoma de Planta/genética , Poliploidia
15.
Plant Cell ; 30(12): 2943-2958, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30361236

RESUMO

Although several resurrection plant genomes have been sequenced, the lack of suitable dehydration-sensitive outgroups has limited genomic insights into the origin of desiccation tolerance. Here, we utilized a comparative system of closely related desiccation-tolerant (Lindernia brevidens) and -sensitive (Lindernia subracemosa) species to identify gene- and pathway-level changes associated with the evolution of desiccation tolerance. The two high-quality Lindernia genomes we assembled are largely collinear, and over 90% of genes are conserved. L. brevidens and L. subracemosa have evidence of an ancient, shared whole-genome duplication event, and retained genes have neofunctionalized, with desiccation-specific expression in L. brevidens Tandem gene duplicates also are enriched in desiccation-associated functions, including a dramatic expansion of early light-induced proteins from 4 to 26 copies in L. brevidens A comparative differential gene coexpression analysis between L. brevidens and L. subracemosa supports extensive network rewiring across early dehydration, desiccation, and rehydration time courses. Many LATE EMBRYOGENESIS ABUNDANT genes show significantly higher expression in L. brevidens compared with their orthologs in L. subracemosa Coexpression modules uniquely upregulated during desiccation in L. brevidens are enriched with seed-specific and abscisic acid-associated cis-regulatory elements. These modules contain a wide array of seed-associated genes that have no expression in the desiccation-sensitive L. subracemosa Together, these findings suggest that desiccation tolerance evolved through a combination of gene duplications and network-level rewiring of existing seed desiccation pathways.


Assuntos
Duplicação Gênica/genética , Lamiaceae/genética , Proteínas de Plantas/genética , Dessecação , Regulação da Expressão Gênica de Plantas/genética
16.
Am J Bot ; 108(2): 346-358, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33421106

RESUMO

Desiccation tolerance has evolved recurrently across diverse land plant lineages as an adaptation for survival in regions where seasonal rainfall drives periodic drying of vegetative tissues. Growing interest in this phenomenon has fueled recent physiological, biochemical, and genomic insights into the mechanistic basis of desiccation tolerance. Although, desiccation tolerance is often viewed as binary and monolithic, substantial variation exists in the phenotype and underlying mechanisms across diverse lineages, heterogeneous populations, and throughout the development of individual plants. Most studies have focused on conserved responses in a subset desiccation-tolerant plants under laboratory conditions. Consequently, the variability and natural diversity of desiccation-tolerant phenotypes remains largely uncharacterized. Here, we discuss the natural variation in desiccation tolerance and argue that leveraging this diversity can improve our mechanistic understanding of desiccation tolerance. We summarize information collected from ~600 desiccation-tolerant land plants and discuss the taxonomic distribution and physiology of desiccation responses. We point out the need to quantify natural diversity of desiccation tolerance on three scales: variation across divergent lineages, intraspecific variation across populations, and variation across tissues and life stages of an individual plant. We conclude that this variability should be accounted for in experimental designs and can be leveraged for deeper insights into the intricacies of desiccation tolerance.


Assuntos
Adaptação Fisiológica , Dessecação , Genômica , Plantas
17.
Am J Bot ; 108(4): 571-579, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33901305

RESUMO

PREMISE: As a leaf expands, its shape dynamically changes. Previously, we documented an allometric relationship between vein and blade area in grapevine leaves. Larger leaves have a smaller ratio of primary and secondary vein area relative to blade area compared to smaller leaves. We sought to use allometry as an indicator of leaf size and plasticity. METHODS: We measured the ratio of vein-to-blade area from the same 208 vines across four growing seasons (2013, 2015, 2016, and 2017). Matching leaves by vine and node, we analyzed the correlation between the size and shape of grapevine leaves as repeated measures with climate variables across years. RESULTS: The proportion of leaf area occupied by vein and blade exponentially decreased and increased, respectively, during leaf expansion making their ratio a stronger indicator of leaf size than area itself. Total precipitation and leaf wetness hours of the previous year but not the current showed strong negative correlations with vein-to-blade ratio, whereas maximum air temperature from the previous year was positively correlated. CONCLUSIONS: Our results demonstrate that vein-to-blade ratio is a strong allometric indicator of leaf size and plasticity in grapevines measured across years. Grapevine leaf primordia are initiated in buds the year before they emerge, and we found that total precipitation and maximum air temperature of the previous growing season exerted the largest statistically significant effects on leaf morphology. Vein-to-blade ratio is a promising allometric indicator of relationships between leaf morphology and climate, the robustness of which should be explored further.


Assuntos
Vitis , Clima , Folhas de Planta , Estações do Ano , Temperatura
18.
Am J Bot ; 108(11): 2269-2281, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34636416

RESUMO

PREMISE: Polyploid species often have complex evolutionary histories that have, until recently, been intractable due to limitations of genomic resources. While recent work has further uncovered the evolutionary history of the octoploid strawberry (Fragaria L.), there are still open questions. Much is unknown about the evolutionary relationship of the wild octoploid species, Fragaria virginiana and Fragaria chiloensis, and gene flow within and among species after the formation of the octoploid genome. METHODS: We leveraged a collection of wild octoploid ecotypes of strawberry representing the recognized subspecies and ranging from Alaska to southern Chile, and a high-density SNP array to investigate wild octoploid strawberry evolution. Evolutionary relationships were interrogated with phylogenetic analysis and genetic clustering algorithms. Additionally, admixture among and within species is assessed with model-based and tree-based approaches. RESULTS: Phylogenetic analysis revealed that the two octoploid strawberry species are monophyletic sister lineages. The genetic clustering results show substructure between North and South American F. chiloensis populations. Additionally, model-based and tree-based methods support gene flow within and among the two octoploid species, including newly identified admixture in the Hawaiian F. chiloensis subsp. sandwicensis population. CONCLUSIONS: F. virginiana and F. chiloensis are supported as monophyletic and sister lineages. All but one of the subspecies show extensive paraphyly. Furthermore, phylogenetic relationships among F. chiloensis populations supports a single population range expansion southward from North America. The inter- and intraspecific relationships of octoploid strawberry are complex and suggest substantial gene flow between sympatric populations among and within species.


Assuntos
Fragaria , América , Fragaria/genética , Genoma de Planta , Filogenia , Poliploidia
19.
Nature ; 527(7579): 508-11, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26560029

RESUMO

Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetium genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a 'near-complete' draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. The Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.


Assuntos
Genoma de Planta/genética , Poaceae/genética , Análise de Sequência de DNA/métodos , Aclimatação/genética , Mapeamento de Sequências Contíguas , Desidratação , Dessecação , Secas , Genes de Plantas/genética , Genômica , Dados de Sequência Molecular
20.
Plant Physiol ; 179(3): 1040-1049, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30602492

RESUMO

Desiccation tolerance was a critical adaptation for the colonization of land by early nonvascular plants. Resurrection plants have maintained or rewired these ancestral protective mechanisms, and desiccation-tolerant species are dispersed across the land plant phylogeny. Although common physiological, biochemical, and molecular signatures are observed across resurrection plant lineages, features underlying the recurrent evolution of desiccation tolerance are unknown. Here we used a comparative approach to identify patterns of genome evolution and gene duplication associated with desiccation tolerance. We identified a single gene family with dramatic expansion in all sequenced resurrection plant genomes and no expansion in desiccation-sensitive species. This gene family of early light-induced proteins (ELIPs) expanded in resurrection plants convergent through repeated tandem gene duplication. ELIPs are universally highly expressed during desiccation in all surveyed resurrection plants and may play a role in protecting against photooxidative damage of the photosynthetic apparatus during prolonged dehydration. Photosynthesis is particularly sensitive to dehydration, and the increased abundance of ELIPs may help facilitate the rapid recovery observed for most resurrection plants. Together, these observations support convergent evolution of desiccation tolerance in land plants through tandem gene duplication.


Assuntos
Genoma de Planta , Proteínas de Plantas/fisiologia , Plantas/genética , Estresse Fisiológico , Dessecação , Evolução Molecular , Duplicação Gênica , Filogenia , Fenômenos Fisiológicos Vegetais/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA