Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Phys Chem Chem Phys ; 25(2): 1177-1186, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36519558

RESUMO

In this study, we explored how chemical reactions of amphiphile compounds can be characterized and followed-up on model interfaces. A custom-made surfactant containing three alkyne sites was first adsorbed and characterized at a water/oil interface. These amphiphiles then underwent interfacial crosslinking by click chemistry upon the addition of a second reactive agent. The monolayer properties and dilatational elasticity, were compared before and after the polymerization. Using bulk phase exchange, the composition of the aqueous bulk phase was finely controlled and washed to specifically measure the interfacial effects of the entities adsorbed and trapped at the interface. In this study, we aim to emphasize an original experimental approach to follow complex phenomena occurring on model interfaces, and also show the potential of this method to characterize multifactorial processes.


Assuntos
Surfactantes Pulmonares , Tensoativos , Tensoativos/química , Água/química , Química Click , Adsorção
2.
Langmuir ; 37(8): 2586-2595, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33577340

RESUMO

In this work, we used an original experimental setup to examine the behavior of insoluble monolayers made with pH-sensitive lipids. Two kinds of unsaturated lipids were chosen: a cationic one (lipid 1) bearing an ammonium headgroup and an anionic one (lipid 2) terminated with an acidic phenol group. The lipids were deposited onto an air bubble interface maintained in an aqueous phase and, after stabilization, were subjected to a series of compressions performed at different pH values. These experiments disclosed a gradual increase in the specific area per molecule when lipids were neutralized. Imposing a pH variation at constant bubble volume also provided surface pressure profiles that confirmed this molecular behavior. As complementary characterization, dilatational rheology disclosed a phase transition from a purely elastic monophasic system to a viscoelastic two-phase system. We hypothesized that this unexpected increase in the specific area with lipid neutralization is related to the presence of unsaturations in each of the two branches of the hydrophobic tails that induce disorder, thereby increasing the molecular area at the interface. Application of the two-dimensional Volmer equation of state allowed the generation of quantitative values for the specific areas that showed variations with pH. It also allowed the determination of apparent pKa values, which are affected by both the electrostatic potential within the monolayer and the affinity of the lipid polar head for the aqueous phase.

3.
Nanomedicine ; 34: 102379, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33713860

RESUMO

Endothelial senescence has been identified as an early event in the development of endothelial dysfunction, a hallmark of cardiovascular disease. This study developed theranostic nanocarriers (NC) decorated with VCAM-1 antibodies (NC-VCAM-1) in order to target cell surface VCAM-1, which is overexpressed in senescent endothelial cells (ECs) for diagnostic and therapeutic purposes. Incubation of Ang II-induced premature senescent ECs or replicative senescent ECs with NC-VCAM-1 loaded with lipophilic fluorescent dyes showed higher fluorescence signals than healthy EC, which was dependent on the NC size and VCAM-1 antibodies concentration, and not observed following masking of VCAM-1. NC loaded with omega 3 polyunsaturated fatty acid (NC-EPA:DHA6:1) were more effective than native EPA:DHA 6:1 to prevent Ang II-induced VCAM-1 and p53 upregulation, and SA-ß-galactosidase activity in coronary artery segments. These theranostic NC might be of interest to evaluate the extent and localization of endothelial senescence and to prevent pro-senescent endothelial responses.


Assuntos
Senescência Celular , Portadores de Fármacos , Endotélio Vascular/citologia , Corantes Fluorescentes/química , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Autoanticorpos/imunologia , Proliferação de Células , Endotélio Vascular/metabolismo , Medicina de Precisão , Suínos , Molécula 1 de Adesão de Célula Vascular/imunologia
4.
Langmuir ; 35(6): 2313-2325, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30630316

RESUMO

Delivery systems able to coencapsulate both hydrophilic and hydrophobic species are of great interest in both fundamental research and industrial applications. Water-in-oil-in-water (w1/O/W2) emulsions are interesting systems for this purpose, but they suffer from limited stability. In this study, we propose an innovative approach to stabilize double emulsions by the synthesis of a silica membrane at the water/oil interface of the primary emulsion (i.e., inner w1/O emulsion). This approach allows the formulation of stable double emulsions through a two-step process, enabling high encapsulation efficiencies of model hydrophilic dyes encapsulated in the internal droplets. This approach also decreases the scale of the double droplets up to the nanoscale, which is not possible without silica stabilization. Different formulation and processing parameters were explored in order to optimize the methodology. Physicochemical characterization was performed by dynamic light scattering, encapsulation efficiency measurements, release profiles, and optical and transmission electron microscopies.

5.
Pharm Res ; 36(6): 78, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30945009

RESUMO

This review article presents the state-of-the-art in the major imaging modalities supplying relevant information on patient health by real-time monitoring to establish an accurate diagnosis and potential treatment plan. We draw a comprehensive comparison between all imagers and ultimately end with our focus on two main types of scanners: X-ray CT and MRI scanners. Numerous types of imaging probes for both imaging techniques are described, as well as reviewing their strengths and limitations, thereby showing the current need for the development of new diagnostic contrast agents (CAs). The role of nanoparticles in the design of CAs is then extensively detailed, reviewed and discussed. We show how nanoparticulate agents should be promising alternatives to molecular ones and how they are already paving new routes in the field of nanomedicine.


Assuntos
Meios de Contraste , Diagnóstico por Imagem/métodos , Diagnóstico por Imagem/tendências , Nanomedicina/métodos , Animais , Meios de Contraste/efeitos adversos , Meios de Contraste/química , Diagnóstico por Imagem/instrumentação , Sistemas de Liberação de Medicamentos , Humanos , Estrutura Molecular , Nanomedicina/tendências , Nanopartículas/efeitos adversos , Nanopartículas/química , Tamanho da Partícula , Polímeros/química , Propriedades de Superfície
6.
Langmuir ; 34(5): 1981-1991, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29334739

RESUMO

In this paper, superparamagnetic iron oxide nanoparticles (SPIONs, around 6 nm) encapsulated in poly(methyl methacrylate) nanoparticles (PMMA NPs) with controlled sizes ranging from 100 to 200 nm have been successfully produced. The hybrid polymeric NPs were prepared following two different methods: (1) nanoprecipitation and (2) nanoemulsification-evaporation. These two methods were implemented in two different microprocesses based on the use of an impact jet micromixer and an elongational-flow microemulsifier. SPIONs-loaded PMMA NPs synthesized by the two methods presented completely different physicochemical properties. The polymeric NPs prepared with the micromixer-assisted nanoprecipitation method showed a heterogeneous dispersion of SPIONs inside the polymer matrix, an encapsulation efficiency close to 100 wt %, and an irregular shape. In contrast, the polymeric NPs prepared with the microfluidic-assisted nanoemulsification-evaporation method showed a homogeneous dispersion, an almost complete encapsulation, and a spherical shape. The properties of the polymeric NPs have been characterized by dynamic light scattering, thermogravimetric analysis, and transmission electron microscope. In vitro cytotoxicity assays were also performed on the nanohybrids and pure PMMA NPs.

7.
Soft Matter ; 13(8): 1660-1669, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28145556

RESUMO

Double emulsions are very attractive systems for many reasons; the most important of these are their capacity to encapsulate hydrophilic and lipophilic molecules simultaneously in a single particle and their potentiality to protect fragile hydrophilic molecules from the continuous phase. Double emulsions represent a technology that is widely present down to the micrometer scale; however, double nanoemulsions, with their new potential applications as nanomedicines or diagnosis agents, currently present a significant challenge. In this study, we propose an original two-step approach for the fabrication of double nanoemulsions with a final size below 200 nm. The process consists of the formulation of a primary water-in-oil (w1/O) nanoemulsion by high-pressure homogenization, followed by the re-emulsification of this primary emulsion by a low-energy method to preserve the double nanostructure. Various characterization techniques were undertaken to confirm the double structure and to evaluate the encapsulation efficiency of a small hydrophilic probe in the inner aqueous droplets. Complementary fluorescence confocal and cryo-TEM microscopy experiments were conducted to characterize and confirm the double structure of the double nanoemulsion.

8.
Pharm Res ; 33(3): 603-14, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26511860

RESUMO

PURPOSE: This study aimed to investigate the impact of the size of X-ray iodinated contrast agent in nano-emulsions, on their toxicity and fate in vivo. METHODS: A new compound, triiodobenzoate cholecalciferol, was synthetized, formulated as nano-emulsions, and followed after i.v. administration in mice by X-ray imaging (micro computed tomography). Physicochemical characterization and process optimization allowed identifying a good compromise between X-ray contrasting properties, monodispersity and stability. This also allowed selecting two formulations with different sizes, hydrodynamic diameters of 55 and 100 nm, but exactly the same composition. In vitro experiments were performed on two cell lines, namely hepatocytes (BNL-CL2) and macrophages (RAW264.7). RESULTS: Cell viability studies, cell uptake observations by confocal microscopy, and uptake quantification by fluorimetry, disclosed clear differences between two formulations, as well as between two types of cell lines. After i.v. injection of the two iodinated nano-emulsions in mice, CT scans provided the quantification of the pharmacokinetics and biodistributions. We finally showed that the size in the nano-emulsions has not a real impact on the pharmacokinetics and biodistributions, but has a strong influence on their toxicity, corroborating the in vitro results. CONCLUSIONS: This study shows that the size of the nanocarrier significantly matters, likely due to highly different interactions with cells and tissues. Graphical Abstract A study on the effect of the size of cholecciferol nano-emulsions, on their in vivo becoming, through X-ray imaging modality.


Assuntos
Meios de Contraste/efeitos adversos , Meios de Contraste/metabolismo , Emulsões/efeitos adversos , Emulsões/metabolismo , Iodo/química , Nanopartículas/efeitos adversos , Nanopartículas/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica/métodos , Colecalciferol/administração & dosagem , Colecalciferol/efeitos adversos , Colecalciferol/metabolismo , Meios de Contraste/administração & dosagem , Emulsões/administração & dosagem , Hepatócitos/metabolismo , Iodo/administração & dosagem , Macrófagos/metabolismo , Camundongos , Nanopartículas/administração & dosagem , Distribuição Tecidual , Ácidos Tri-Iodobenzoicos/administração & dosagem , Ácidos Tri-Iodobenzoicos/efeitos adversos , Ácidos Tri-Iodobenzoicos/metabolismo , Microtomografia por Raio-X/métodos , Raios X
9.
Pharm Dev Technol ; 20(1): 99-104, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25118590

RESUMO

A preliminary study of the feasibility of using near-infrared spectroscopy (NIRS) for the offline simultaneous determination of metoprolol tartrate (MTP) and hydrochlorothiazide (HTZ) in powders and tablets has been carried out. An industrial tableting process was simulated using an instrumented tablet press replicator - Presster™. Conventional reference analytics were replaced with gravimetric analysis. The NIRS models for powder and tablet analysis were developed using 55 samples, and tested on 80 independent samples. Powder mixture components were weighed in glass vials to collect reference values, mixed and manually transferred to a tablet press replicator and compacted to form tablets. NIRS calibration models were developed using spectral and gravimetric reference data. The two model drugs were simultaneously quantified exhibiting root mean-squared error of prediction (RMSEP) of 1.69 and 1.31 mg for HTZ powder and tablet samples, respectively, and RMSEP of 3.15 and 3.00 mg for MTP powder and tablet samples, respectively. NIRS analysis of MTP and HTZ in powder and tablet form has not been reported elsewhere.


Assuntos
Hidroclorotiazida/análise , Metoprolol/análise , Calibragem , Pós , Padrões de Referência , Espectroscopia de Luz Próxima ao Infravermelho , Comprimidos
10.
Pharm Dev Technol ; 20(1): 90-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25118591

RESUMO

Near-infrared spectroscopy (NIRS) is used in the pharmaceutical industry for monitoring drug content during the tablet manufacturing process. It is of critical importance to understand the effect of process factors on NIRS performance. Design of Experiments (DoE) methodology was applied in this work for the systematic study of the effects of compression pressure, precompression pressure and tableting speed on an average Euclidean distance (AED), which reflects spectral features of the tablets, and root mean-squared error of prediction (RMSEP) as key performance indicator of NIRS calibration models. Caffeine tablets were manufactured in 17 experimental runs in accordance with D-optimal design. Developed diffuse transmittance (DT) and diffuse reflectance (DR) calibration models were tested on five independent test sets to confirm the conclusions of the DoE. Compression pressure and tableting speed have shown significant effect on the studied responses in DT mode, whereas all three studied factors have shown a significant effect in DR mode. Significant factors were considered in the development of the global calibration models. The authors suggest further study of RMSEP and AED responses to draw reliable conclusions on the effects of tableting process factors. The global calibration model in DT mode has shown superior performance compared to DR mode.


Assuntos
Cafeína/química , Composição de Medicamentos/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Comprimidos , Cafeína/administração & dosagem , Calibragem , Simulação por Computador , Pós , Pressão , Espectrofotometria Ultravioleta
11.
Pharm Res ; 31(1): 20-34, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23896738

RESUMO

In the last decade, nanomaterials have gained considerable attention and interest in the development of new and efficient molecular probes for medical diagnosis and imaging. Compared to traditional contrast agents used from the 70s, this comes from the new possibilities offered by the increased half-life of nanosystems in blood stream, as well as by the specific accumulation in organ of lesions through passive or active targeting mechanisms. Heavy metal or iodinated-loaded nanoparticles are excellent absorbers of X-rays and can offer excellent improvement in medical diagnosis and X-ray imaging. This review aims to propose an accurate state-of-the-art of the emerging applications of nanotechnology in X-ray imaging. Likewise we will discuss and compare all the solutions proposed, and the impact of their composition, formulation methods, and physicochemical properties on their applications, efficiency, and potential industrial scaling-up.


Assuntos
Diagnóstico por Imagem/métodos , Nanoestruturas , Nanotecnologia/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Humanos
12.
Pharmaceutics ; 16(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931933

RESUMO

In this study, we present a new type of polymer-free hydrogel made only from nonionic surfactants, oil, and water. Such a system is produced by taking advantage of the physicochemical behavior and interactions between nonionic surfactants and oil and water phases, according to a process close to spontaneous emulsification used in the production of nano-emulsions. Contrary to the classical process of emulsion-based gel formulation, we propose a simple one-step approach. Beyond the originality of the concept, these nanoemulgels appear as very promising systems able to encapsulate and deliver various molecules with different solubilities. In the first section, we propose a comprehensive investigation of the gel formation process and its limits through oscillatory rheological characterization, characterization of the sol/gel transitions, and gel strength. The second section is focused on the follow-up of the release of an encapsulated model hydrophilic molecule and on the impact of the rheological gel properties on the release profiles.

13.
Pharmaceutics ; 16(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38399224

RESUMO

Flurbiprofen (FBP), a nonsteroidal anti-inflammatory drug (NSAID), is commonly used to treat the pain of rheumatoid arthritis, but in prolonged use it causes gastric irritation and ulcer. To avoid these adverse events of NSAIDs, the simultaneous administration of H2 receptor antagonists such as ranitidine hydrochloride (RHCl) is obligatory. Here, we developed composite oral fast-disintegrating films (ODFs) containing FBP along with RHCl to provide a gastroprotective effect as well as to enhance the solubility and bioavailability of FBP. The ternary solid dispersion (TSD) of FBP was fabricated with Syloid® 244FP and poloxamer® 188 using the solvent evaporation technique. The synthesized FBP-TSD (coded as TSD) was loaded alone (S1) and in combination with plain RHCl (S2) in the composite ODFs based on hydroxypropyl methyl cellulose E5 (HPMC E5). The synthesized composite ODFs were evaluated by in vitro (thickness, folding endurance, tensile strength, disintegration, SEM, FTIR, XRD and release study) and in vivo (analgesic, anti-inflammatory activity, pro-inflammatory cytokines and gastroprotective assay) studies. The in vitro characterization revealed that TSD preserved its integrity and was effectively loaded in S1 and S2 with optimal compatibility. The films were durable and flexible with a disintegration time ≈15 s. The release profile at pH 6.8 showed that the solid dispersion of FBP improved the drug solubility and release when compared with pure FBP. After in vitro studies, it was observed that the analgesic and anti-inflammatory activity of S2 was higher than that of pure FBP and other synthesized formulations (TSD and S1). Similarly, the level of cytokines (TNF-α and IL-6) was also markedly reduced by S2. Furthermore, a gastroprotective assay confirmed that S2 has a higher safety profile in comparison to pure FBP and other synthesized formulations (TSD and S1). Thus, composite ODF (S2) can effectively enhance the FBP solubility and its therapeutic efficacy, along with its gastroprotective effect.

14.
Pharm Res ; 28(5): 978-85, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21057856

RESUMO

Much research has been done over the past years on self-emulsifying drug delivery systems, their main interest being the simplicity of the formulation processes, the great stability of the systems and their high potential in pharmaceutical applications and industrial scaling-up. Self-emulsifying drug delivery systems are generally described in the literature indiscriminately as either nano-emulsions or micro-emulsions. Although this misconception appears to be common, these two systems are fundamentally different, based on very different physical and physicochemical concepts. Their differences result in very different stability behaviors, which can have significant consequences regarding their applications and administration as nanomedicines. This paper aims at clarifying the problem, first by reviewing all the physical and physicochemical fundamentals regarding these two systems, using a quantitative thermodynamic approach for micro-emulsions. Following these clarifications, we show how the confusion between nano-emulsions and micro-emulsions appears in the literature and how most of the micro-emulsion systems referred to are actually nano-emulsion systems. Finally, we illustrate how to clear up this misconception using simple experiments. Since this confusion is well established in the literature, such clarifications seem necessary in order to improve the understanding of research in this important field.


Assuntos
Sistemas de Liberação de Medicamentos , Emulsões/química , Preparações Farmacêuticas/administração & dosagem , Emulsificantes/química , Nanoestruturas/química , Termodinâmica
15.
Adv Drug Deliv Rev ; 179: 114019, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34699940

RESUMO

Since antiquity, the survival of human civilization has always been threatened by the microbial infections. An alarming surge in the resistant microbial strains against the conventional drugs is quite evident in the preceding years. Furthermore, failure of currently available regimens of antibiotics has been highlighted by the emerging threat of biofilms in the community and hospital settings. Biofilms are complex dynamic composites rich in extracellular polysaccharides and DNA, supporting plethora of symbiotic microbial life forms, that can grow on both living and non-living surfaces. These enforced structures are impervious to the drugs and lead to spread of recurrent and non-treatable infections. There is a strong realization among the scientists and healthcare providers to work out alternative strategies to combat the issue of drug resistance and biofilms. Plants are a traditional but rich source of effective antimicrobials with wider spectrum due to presence of multiple constituents in perfect synergy. Other than the biocompatibility and the safety profile, these phytochemicals have been repeatedly proven to overcome the non-responsiveness of resistant microbes and films via multiple pathways such as blocking the efflux pumps, better penetration across the cell membranes or biofilms, and anti-adhesive properties. However, the unfavorable physicochemical attributes and stability issues of these phytochemicals have hampered their commercialization. These issues of the phytochemicals can be solved by designing suitably constructed nanoscaled structures. Nanosized systems can not only improve the physicochemical features of the encapsulated payloads but can also enhance their pharmacokinetic and therapeutic profile. This review encompasses why and how various types of phytochemicals and their nanosized preparations counter the microbial resistance and the biofouling. We believe that phytochemical in tandem with nanotechnological innovations can be employed to defeat the microbial resistance and biofilms. This review will help in better understanding of the challenges associated with developing such platforms and their future prospects.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Sistemas de Liberação de Fármacos por Nanopartículas/química , Compostos Fitoquímicos/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Infecção Hospitalar/microbiologia , Portadores de Fármacos , Liberação Controlada de Fármacos , Farmacorresistência Bacteriana Múltipla/fisiologia , Estabilidade de Medicamentos , Equipamentos e Provisões/microbiologia , Humanos , Tamanho da Partícula , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/química
16.
J Colloid Interface Sci ; 578: 768-778, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32574910

RESUMO

Nano-emulsion consists of a dispersion of oil droplets sizing below 200 nm, in aqueous continuous phase, and generally stabilized by low-molecular-weight surfactants. These stable nano-carriers are able to encapsulate and transport lipophilic molecules poorly soluble in water. However, the question on the leakage and release mechanisms of an active pharmaceutical ingredient, from oil nano-droplets to an acceptor medium has not been clearly addressed. Herein, we developed a simple fluorescence approach based on self-quenching of lipophilic fluorophore-based on Nile Red (NR668) to monitor cargo transfer from lipid nano-droplets to the acceptor medium. In this method, the fluorophore release can be monitored by the increase in its fluorescence quantum yield and the blue shift in its emission spectrum. The studies of the release process allow emphasizing an important role of the bulk aqueous medium in controlling the droplet to droplet fluorophore transfer and the attained equilibrium. The developed methodology could be applied to monitor release of other lipophilic dyes and it could help to better understand the cargo release from nanocarriers.

17.
Int J Pharm ; 585: 119481, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32473375

RESUMO

Nanosized gel particles, so-called nanogels, have attracted substantial interest in different application fields, thanks to their controllable and three-dimensional physical structure, good mechanical properties and potential biocompatibility. Literature reports many technologies for their preparation and design, however a recurrent limitation remains in their broad size distributions as well as in the poor size control. Therefore, the monodisperse and size-controlled nanogels preparation by simple process -like emulsification- is a real challenge still in abeyance to date. In this study we propose an original low energy emulsification approach for the production of monodisperse nanogels, for which the size can be finely controlled in the range 30 to 200 nm. The principle lies in the fabrication of a direct nano-emulsion containing both oil (medium chain triglycerides) and a bi-functional acrylate monomer. The nanogels are thus formed in situ upon UV irradiation of the droplet suspension. Advantage of such modification of the oil nano-carriers are the potential modulation of the release of encapsulated drugs, as a function of the density and/or properties of the polymer chain network entrapped in the oil nano-droplets. This hypothesis was confirmed using a model of hydrophobic drug -ketoprofen- entrapped into the nanogels particles, along with the study of the release profile, carried out in function of the nature of the monomers, density of polymer chains, and different formulation parameters.


Assuntos
Química Farmacêutica/métodos , Emulsões/síntese química , Lipídeos/síntese química , Nanogéis/química , Emulsões/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Cetoprofeno/síntese química , Cetoprofeno/metabolismo , Metabolismo dos Lipídeos , Nanopartículas/química , Nanopartículas/metabolismo
18.
Pharmaceutics ; 11(11)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726769

RESUMO

The current nanotechnology era is marked by the emergence of various magnetic inorganic nanometer-sized colloidal particles. These have been extensively applied and hold an immense potential in biomedical applications including, for example, cancer therapy, drug nanocarriers (NCs), or in targeted delivery systems and diagnosis involving two guided-nanoparticles (NPs) as nanoprobes and contrast agents. Considerable efforts have been devoted to designing iron oxide NPs (IONPs) due to their superparamagnetic (SPM) behavior (SPM IONPs or SPIONs) and their large surface-to-volume area allowing more biocompatibility, stealth, and easy bonding to natural biomolecules thanks to grafted ligands, selective-site moieties, and/or organic and inorganic corona shells. Such nanomagnets with adjustable architecture have been the topic of significant progresses since modular designs enable SPIONs to carry out several functions simultaneously such as local drug delivery with real-time monitoring and imaging of the targeted area. Syntheses of SPIONs and adjustments of their physical and chemical properties have been achieved and paved novel routes for a safe use of those tailored magnetic ferrous nanomaterials. Herein we will emphasis a basic notion about NPs magnetism in order to have a better understanding of SPION assets for biomedical applications, then we mainly focus on magnetite iron oxide owing to its outstanding magnetic properties. The general methods of preparation and typical characteristics of magnetite are reviewed, as well as the major biomedical applications of magnetite.

19.
J Pharm Pharmacol ; 71(8): 1185-1198, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31049986

RESUMO

OBJECTIVES: This review highlights both the physicochemical characteristics of the nanocarriers (NCs) and the physiological features of tumour microenvironment (TME) to outline what strategies undertaken to deliver the molecules of interest specifically to certain lesions. This review discusses these properties describing the convenient choice between passive and active targeting mechanisms with details, illustrated with examples of targeting agents up to preclinical research or clinical advances. KEY FINDINGS: Targeted delivery approaches for anticancers have shown a steep rise over the past few decades. Though many successful preclinical trials, only few passive targeted nanocarriers are approved for clinical use and none of the active targeted nanoparticles. Herein, we review the principles and for both processes and the correlation with the tumour microenvironment. We also focus on the limitation and advantages of each systems regarding laboratory and industrial scale. SUMMARY: The current literature discusses how the NCs and the enhanced permeation and retention effect impact the passive targeting. Whereas the active targeting relies on the ligand-receptor binding, which improves selective accumulation to targeted sites and thus discriminates between the diseased and healthy tissues. The latter could be achieved by targeting the endothelial cells, tumour cells, the acidic environment of cancers and nucleus.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/química , Portadores de Fármacos/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Sistemas de Liberação de Medicamentos/métodos , Humanos , Microambiente Tumoral/efeitos dos fármacos
20.
J Control Release ; 295: 31-49, 2019 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-30579983

RESUMO

Attractive interest on double emulsions comes from their unique morphology, making them general multifunctional carriers able to encapsulate different hydrophilic and lipophilic molecules in the same particle. Over the past century, two different types of methods were followed to prepare double emulsions for pharmaceutics applications, so-called "one-step" and "two-step" processes. The two-step approach, consisting in two different emulsifications successively performed, allows the optimal and more efficient formulations due to simplicity of principle and controllability of the process. In this review, focused on the formulation of double emulsions by two-step process, we recount the historical development of this approach, along with the state-of-the-art, including a discussion on the role of the formulation parameters, surfactants, amphiphilic polymers, interface stabilization, volume fraction, and so forth, on the final formulation stability, morphology and properties as drug delivery system. Discussion was also extended to polymeric microparticles and nanoparticles made by solvent diffusion, on the basis of double emulsions made by two-step process, along with literature review on the impact of different formulation and processing parameters. In addition, the properties of the polymers used in the microparticles matrix (molecular weight, chemical nature) potentially impacting on the ones of the microparticles formed (drug release kinetics, stability, morphology), were also discussed. Finally, the future trends in double emulsions application were addressed, emphasizing some new advances made in the emulsifications method as potentially able to open the range of applications, for example to nanoscale with spontaneous emulsification or low energy microfluidic emulsification.


Assuntos
Portadores de Fármacos/química , Emulsões/química , Polímeros/química , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Técnicas Analíticas Microfluídicas/métodos , Nanopartículas/química , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA