RESUMO
The molecular events leading to the development of the bat wing remain largely unknown, and are thought to be caused, in part, by changes in gene expression during limb development. These expression changes could be instigated by variations in gene regulatory enhancers. Here, we used a comparative genomics approach to identify regions that evolved rapidly in the bat ancestor, but are highly conserved in other vertebrates. We discovered 166 bat accelerated regions (BARs) that overlap H3K27ac and p300 ChIP-seq peaks in developing mouse limbs. Using a mouse enhancer assay, we show that five Myotis lucifugus BARs drive gene expression in the developing mouse limb, with the majority showing differential enhancer activity compared to the mouse orthologous BAR sequences. These include BAR116, which is located telomeric to the HoxD cluster and had robust forelimb expression for the M. lucifugus sequence and no activity for the mouse sequence at embryonic day 12.5. Developing limb expression analysis of Hoxd10-Hoxd13 in Miniopterus natalensis bats showed a high-forelimb weak-hindlimb expression for Hoxd10-Hoxd11, similar to the expression trend observed for M. lucifugus BAR116 in mice, suggesting that it could be involved in the regulation of the bat HoxD complex. Combined, our results highlight novel regulatory regions that could be instrumental for the morphological differences leading to the development of the bat wing.
Assuntos
Quirópteros/genética , Membro Anterior/metabolismo , Proteínas de Homeodomínio/genética , Organogênese/genética , Vertebrados/genética , Animais , Quirópteros/crescimento & desenvolvimento , Embrião de Mamíferos , Membro Anterior/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Genômica , Proteínas de Homeodomínio/biossíntese , Camundongos , Alinhamento de Sequência , Análise de Sequência , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Vertebrados/crescimento & desenvolvimento , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismoRESUMO
The limb is widely used as a model developmental system and changes to gene expression patterns in its signaling centers, notably the zone of polarizing activity (ZPA) and the apical ectodermal ridge (AER), are known to cause limb malformations and evolutionary differences in limb morphology. Although several genes that define these limb signaling centers have been described, the identification of regulatory elements that are active within these centers has been limited. By dissecting mouse E11.5 limbs that fluorescently mark the ZPA or AER, followed by fluorescence-activated cell sorting and low-cell H3K27ac ChIP-seq, we identified thousands of specific signaling-center enhancers. Our ChIP-seq datasets show strong correlation with ZPA- and AER-expressed genes, previously characterized functional ZPA and AER enhancers and enrichment for relevant biological terms related to limb development and malformation for the neighboring genes. Using transgenic assays, we show that several of these sequences function as ZPA and AER enhancers. Our results identify novel ZPA and AER enhancers that could be important regulators of genes involved in the establishment of these specialized regions and the patterning of tetrapod limbs.
Assuntos
Botões de Extremidades/embriologia , Botões de Extremidades/metabolismo , Animais , Ectoderma/citologia , Ectoderma/metabolismo , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos , Organogênese/genética , Organogênese/fisiologia , GravidezRESUMO
Many folate-related genes have been investigated for possible causal roles in neural tube defects (NTDs) and oral clefts. However, no previous reports have examined the major gene responsible for folate uptake, the proton-coupled folate transporter (SLC46A1). We tested for association between these birth defects and single nucleotide polymorphisms in the SLC46A1 gene. The NTD study population included 549 complete and incomplete case-family triads, and 999 controls from Ireland. The oral clefts study population comprised a sample from Utah (495 complete and incomplete case-family triads and 551 controls) and 221 Filipino multiplex cleft families. There was suggestive evidence of increased NTD case risk with the rs17719944 minor allele (odds ratio (OR): 1.29; 95% confidence intervals (CI): [1.00-1.67]), and decreased maternal risk of an NTD pregnancy with the rs4795436 minor allele (OR: 0.62; [0.39-0.99]). In the Utah sample, the rs739439 minor allele was associated with decreased case risk for cleft lip with cleft palate (genotype relative risk (GRR): 0.56 [0.32-0.98]). Additionally, the rs2239907 minor allele was associated with decreased case risk for cleft lip with cleft palate in several models, and with cleft palate only in a recessive model (OR: 0.41; [0.20-0.85]). These associations did not remain statistically significant after correcting for multiple hypothesis testing. Nominal associations between SLC46A1 polymorphisms and both Irish NTDs and oral clefts in the Utah population suggest some role in the etiology of these birth defects, but further investigation in other populations is needed.
Assuntos
Fenda Labial/genética , Defeitos do Tubo Neural/genética , Polimorfismo de Nucleotídeo Único , Transportador de Folato Acoplado a Próton/genética , Alelos , Estudos de Casos e Controles , Frequência do Gene , Estudos de Associação Genética , Genótipo , Humanos , Fatores de RiscoRESUMO
The identification of homologies, whether morphological, molecular, or genetic, is fundamental to our understanding of common biological principles. Homologies bridging the great divide between deuterostomes and protostomes have served as the basis for current models of animal evolution and development. It is now appreciated that these two clades share a common developmental toolkit consisting of conserved transcription factors and signaling pathways. These patterning genes sometimes show common expression patterns and genetic interactions, suggesting the existence of similar or even conserved regulatory apparatus. However, previous studies have found no regulatory sequence conserved between deuterostomes and protostomes. Here we describe the first such enhancers, which we call bilaterian conserved regulatory elements (Bicores). Bicores show conservation of sequence and gene synteny. Sequence conservation of Bicores reflects conserved patterns of transcription factor binding sites. We predict that Bicores act as response elements to signaling pathways, and we show that Bicores are developmental enhancers that drive expression of transcriptional repressors in the vertebrate central nervous system. Although the small number of identified Bicores suggests extensive rewiring of cis-regulation between the protostome and deuterostome clades, additional Bicores may be revealed as our understanding of cis-regulatory logic and sample of bilaterian genomes continue to grow.
Assuntos
Elementos Facilitadores Genéticos , Genoma , Invertebrados/genética , Fatores de Transcrição/genética , Vertebrados/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Evolução Biológica , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Sequência Conservada , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Invertebrados/embriologia , Invertebrados/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Alinhamento de Sequência , Transdução de Sinais , Sintenia , Fatores de Transcrição/metabolismo , Vertebrados/embriologia , Vertebrados/metabolismoRESUMO
Point mutations in the zone of polarizing activity regulatory sequence (ZRS) are known to cause human limb malformations. Although most mutations cause preaxial polydactyly (PPD), triphalangeal thumb (TPT) or both, a mutation in position 404 of the ZRS causes more severe Werner mesomelic syndrome (WMS) for which malformations include the distal arm or leg bones in addition to the hands and/or feet. Of more than 15 reported families with ZRS mutations, only one homozygous individual has been reported, with no change in phenotype compared with heterozygotes. Here, we describe a novel point mutation in the ZRS, 402C>T (AC007097.4:g.105548C>T), that is transmitted through two Mexican families with one homozygous individual. The homozygous phenotype for this mutation, WMS, is more severe than the numerous heterozygous individuals genotyped from both families who have TPT and PPD. A mouse transgenic enhancer assay shows that this mutation causes an expansion of the enhancer's expression domain in the developing mouse limb, confirming its pathogenicity. Combined, our results identify a novel ZRS mutation in the Mexican population, 402C>T, and suggest that a dosage effect exists for this ZRS mutation.
Assuntos
Deformidades Congênitas da Mão/genética , Heterozigoto , Homozigoto , Proteínas de Membrana/genética , Mutação , Polidactilia/genética , Polegar/anormalidades , Animais , Sequência de Bases , Feminino , Dosagem de Genes , Genótipo , Humanos , México , Camundongos , Dados de Sequência Molecular , Linhagem , Fenótipo , Polidactilia/patologiaRESUMO
Mutations in the Sonic hedgehog limb enhancer, the zone of polarizing activity regulatory sequence (ZRS, located within the gene LMBR1), commonly called the ZRS), cause limb malformations. In humans, three classes of mutations have been proposed based on the limb phenotype; single base changes throughout the region cause preaxial polydactyly (PPD), single base changes at one specific site cause Werner mesomelic syndrome, and large duplications cause polysyndactyly. This study presents a novel mutation-a small insertion. In a Swedish family with autosomal-dominant PPD, we found a 13 base pair insertion within the ZRS, NG_009240.1:g.106934_106935insTAAGGAAGTGATT (traditional nomenclature: ZRS603ins13). Computational transcription factor-binding site predictions suggest that this insertion creates new binding sites and a mouse enhancer assay shows that this insertion causes ectopic gene expression. This study is the first to discover a small insertion in an enhancer that causes a human limb malformation and suggests a potential mechanism that could explain the ectopic expression caused by this mutation.
Assuntos
Deformidades Congênitas da Mão/genética , Proteínas de Membrana/genética , Mutagênese Insercional/imunologia , Polidactilia/genética , Polegar/patologia , HumanosRESUMO
BACKGROUND: Neural tube defects (NTDs) are common birth defects (~1 in 1000 pregnancies in the US and Europe) that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., MTHFR rs1801133 (677 C > T) and MTHFD1 rs2236225 (R653Q)) have been found to increase NTD risk. We hypothesized that variants in additional folate/B12 pathway genes contribute to NTD risk. METHODS: A tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents), including 301 cases and 341 Irish controls to perform case-control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects. RESULTS: Nearly 70 SNPs in 30 genes were found to be associated with NTDs at the p < 0.01 level. The ten strongest association signals (p-value range: 0.0003-0.0023) were found in nine genes (MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1 and T (Brachyury)) and included the known NTD risk factor MTHFD1 R653Q (rs2236225). The single strongest signal was observed in a new candidate, MFTC rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele). Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing. CONCLUSIONS: To our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the stringency of correction are likely to have contributed to real associations failing to survive correction. We have produced a ranked list of variants with the strongest association signals. Variants in the highest rank of associations are likely to include true associations and should be high priority candidates for further study of NTD risk.
Assuntos
Variação Genética , Defeitos do Tubo Neural/genética , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Ácido Fólico/genética , Ácido Fólico/metabolismo , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Irlanda , Camundongos , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Vitamina B 12/genética , Vitamina B 12/metabolismoRESUMO
Limb malformations are one of the most common types of human congenital malformations. Mutations in the ZRS enhancer of Sonic Hedgehog are thought to be responsible for pre-axial polydactyly in multiple independent families. Here, we describe a large Balochi tribal family from Southern Punjab, Pakistan, with a variable set of limb malformations and a novel ZRS mutation. The family has a limb phenotype characterized by triphalangeal thumb, pre-axial polydactyly, and post-axial polydactyly. There is also a high degree of phenotypic heterogeneity with less common clinical findings in the affected family members that include osseous syndactyly of forth-fifth fingers, clinodactyly, hypoplasia of mesoaxial fingers, and bifid halluces. The presentation in most of the affected patients was bilateral and symmetrical. A heterozygous C>A mutation at position 287 of the ZRS enhancer (chr7:156,584,283; hg19) was detected in all affected subjects and is absent from four unaffected family members, 42 unrelated samples, and multiple databases of human variation. Combined, these results identify a novel ZRS287 C>A mutation which leads to a variable spectrum of limb phenotypes.
Assuntos
Elementos Facilitadores Genéticos , Deformidades Congênitas da Mão/genética , Proteínas Hedgehog/genética , Proteínas de Membrana/genética , Mutação , Feminino , Humanos , Masculino , Paquistão , LinhagemRESUMO
The underlying mutations that cause human limb malformations are often difficult to determine, particularly for limb malformations that occur as isolated traits. Evidence from a variety of studies shows that cis-regulatory mutations, specifically in enhancers, can lead to some of these isolated limb malformations. Here, we provide a review of human limb malformations that have been shown to be caused by enhancer mutations and propose that cis-regulatory mutations will continue to be identified as the cause of additional human malformations as our understanding of regulatory sequences improves.
Assuntos
Deformidades Congênitas dos Membros/genética , Sequências Reguladoras de Ácido Nucleico/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , MutaçãoRESUMO
Individual studies of the genetics of neural tube defects (NTDs) contain results on a small number of genes in each report. To identify genetic risk factors for NTDs, we evaluated potentially functional single nucleotide polymorphisms (SNPs) that are biologically plausible risk factors for NTDs but that have never been investigated for an association with NTDs, examined SNPs that previously showed no association with NTDs in published studies, and tried to confirm previously reported associations in folate-related and non-folate-related genes. We investigated 64 SNPs in 34 genes for association with spina bifida in up to 558 case families (520 cases, 507 mothers, 457 fathers) and 994 controls in Ireland. Case-control and mother-control comparisons of genotype frequencies, tests of transmission disequilibrium, and log-linear regression models were used to calculate effect estimates. Spina bifida was associated with over-transmission of the LEPR (leptin receptor) rs1805134 minor C allele [genotype relative risk (GRR): 1.5; 95% confidence interval (CI): 1.0-2.1; P = 0.0264] and the COMT (catechol-O-methyltransferase) rs737865 major T allele (GRR: 1.4; 95% CI: 1.1-2.0; P = 0.0206). After correcting for multiple comparisons, these individual test P-values exceeded 0.05. Consistent with previous reports, spina bifida was associated with MTHFR 677C>T, T (Brachyury) rs3127334, LEPR K109R, and PDGFRA promoter haplotype combinations. The associations between LEPR SNPs and spina bifida suggest a possible mechanism for the finding that obesity is a NTD risk factor. The association between a variant in COMT and spina bifida implicates methylation and epigenetics in NTDs.
Assuntos
Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Disrafismo Espinal/genética , Catecol O-Metiltransferase/genética , Pai , Feminino , Genótipo , Humanos , Irlanda , Modelos Lineares , Desequilíbrio de Ligação , Masculino , Mães , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptores para Leptina/genética , Fatores de RiscoRESUMO
Bats are the only mammals capable of powered flight, but little is known about the genetic determinants that shape their wings. Here we generated a genome for Miniopterus natalensis and performed RNA-seq and ChIP-seq (H3K27ac and H3K27me3) analyses on its developing forelimb and hindlimb autopods at sequential embryonic stages to decipher the molecular events that underlie bat wing development. Over 7,000 genes and several long noncoding RNAs, including Tbx5-as1 and Hottip, were differentially expressed between forelimb and hindlimb, and across different stages. ChIP-seq analysis identified thousands of regions that are differentially modified in forelimb and hindlimb. Comparative genomics found 2,796 bat-accelerated regions within H3K27ac peaks, several of which cluster near limb-associated genes. Pathway analyses highlighted multiple ribosomal proteins and known limb patterning signaling pathways as differentially regulated and implicated increased forelimb mesenchymal condensation in differential growth. In combination, our work outlines multiple genetic components that likely contribute to bat wing formation, providing insights into this morphological innovation.
Assuntos
Quirópteros/embriologia , Quirópteros/genética , Epigênese Genética , Transcriptoma , Asas de Animais/embriologia , Animais , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica , Genoma , Masculino , RNA Longo não Codificante , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de RNARESUMO
Nonsense mutations in FGF16 have recently been linked to X-linked recessive hand malformations with fusion between the fourth and the fifth metacarpals and hypoplasia of the fifth digit (MF4; MIM#309630). The purpose of this study was to perform careful clinical phenotyping and to define molecular mechanisms behind X-linked recessive MF4 in three unrelated families. We performed whole-exome sequencing, and identified three novel mutations in FGF16. The functional impact of FGF16 loss was further studied using morpholino-based suppression of fgf16 in zebrafish. In addition, clinical investigations revealed reduced penetrance and variable expressivity of the MF4 phenotype. Cardiac disorders, including myocardial infarction and atrial fibrillation followed the X-linked FGF16 mutated trait in one large family. Our findings establish that a mutation in exon 1, 2 or 3 of FGF16 results in X-linked recessive MF4 and expand the phenotypic spectrum of FGF16 mutations to include a possible correlation with heart disease.