Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Bioorg Med Chem Lett ; 27(4): 781-786, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28131714
2.
Bioorg Med Chem Lett ; 25(20): 4642-7, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26320624

RESUMO

Design and optimization of benzo- and pyrido-thiazoles/isothiazoles are reported leading to the discovery of the potent, orally bioavailable Syk inhibitor 5, which was found to be active in a rat PK/PD model. Compound 5 showed acceptable overall kinase selectivity. However, in addition to Syk it also inhibited Aurora kinase in enzymatic and cellular settings leading to findings in the micronucleus assay. As a consequence, compound 5 was not further pursued.


Assuntos
Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Tiazóis/farmacologia , Administração Oral , Animais , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/metabolismo , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Quinase Syk , Tiazóis/administração & dosagem , Tiazóis/química
3.
Bioorg Med Chem Lett ; 24(20): 4812-7, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25248678

RESUMO

A novel class of selective inhibitors of ROCK1 and ROCK2 has been identified by structural based drug design. PK/PD experiments using a set of highly selective Rho kinase inhibitors suggest that systemic Rho kinase inhibition is linked to a reversible reduction in lymphocyte counts. These results led to the consideration of topical delivery of these molecules, and to the identification of a lead molecule 7 which shows promising PK and PD in a murine model of pulmonary hypertension after intra-tracheal dosing.


Assuntos
Hipertensão Pulmonar/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Animais , Cristalografia por Raios X , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Ratos , Ratos Endogâmicos Lew , Relação Estrutura-Atividade , Quinases Associadas a rho/metabolismo
5.
J Med Chem ; 67(2): 1544-1562, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38175811

RESUMO

NLRP3 is a molecular sensor recognizing a wide range of danger signals. Its activation leads to the assembly of an inflammasome that allows for activation of caspase-1 and subsequent maturation of IL-1ß and IL-18, as well as cleavage of Gasdermin-d and pyroptotic cell death. The NLRP3 inflammasome has been implicated in a plethora of diseases including gout, type 2 diabetes, atherosclerosis, Alzheimer's disease, and cancer. In this publication, we describe the discovery of a novel, tricyclic, NLRP3-binding scaffold by high-throughput screening. The hit (1) could be optimized into an advanced compound NP3-562 demonstrating excellent potency in human whole blood and full inhibition of IL-1ß release in a mouse acute peritonitis model at 30 mg/kg po dose. An X-ray structure of NP3-562 bound to the NLRP3 NACHT domain revealed a unique binding mode as compared to the known sulfonylurea-based inhibitors. In addition, NP3-562 shows also a good overall development profile.


Assuntos
Diabetes Mellitus Tipo 2 , Gota , Camundongos , Animais , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Macrófagos/metabolismo , Interleucina-1beta/metabolismo , Caspase 1/metabolismo
6.
Cell Stem Cell ; 31(4): 554-569.e17, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579685

RESUMO

The YAP/Hippo pathway is an organ growth and size regulation rheostat safeguarding multiple tissue stem cell compartments. LATS kinases phosphorylate and thereby inactivate YAP, thus representing a potential direct drug target for promoting tissue regeneration. Here, we report the identification and characterization of the selective small-molecule LATS kinase inhibitor NIBR-LTSi. NIBR-LTSi activates YAP signaling, shows good oral bioavailability, and expands organoids derived from several mouse and human tissues. In tissue stem cells, NIBR-LTSi promotes proliferation, maintains stemness, and blocks differentiation in vitro and in vivo. NIBR-LTSi accelerates liver regeneration following extended hepatectomy in mice. However, increased proliferation and cell dedifferentiation in multiple organs prevent prolonged systemic LATS inhibition, thus limiting potential therapeutic benefit. Together, we report a selective LATS kinase inhibitor agonizing YAP signaling and promoting tissue regeneration in vitro and in vivo, enabling future research on the regenerative potential of the YAP/Hippo pathway.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas de Sinalização YAP , Animais , Humanos , Camundongos , Proliferação de Células , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/agonistas , Proteínas de Sinalização YAP/efeitos dos fármacos , Proteínas de Sinalização YAP/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
7.
ACS Med Chem Lett ; 14(6): 841-845, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37312861

RESUMO

We present a novel concept for the design of supersoft topical drugs. Enzymatic cleavage of the carbonate ester of the potent pan Janus kinase (JAK) inhibitor 2 releases hydroxypyridine 3. Due to hydroxypyridine-pyridone tautomerism, 3 undergoes a rapid conformational change preventing the compound to assume the bioactive conformation required for binding to JAK kinases. We demonstrate that the hydrolysis in human blood and the subsequent shape change lead to the deactivation of 2.

8.
J Med Chem ; 66(21): 15042-15053, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37906573

RESUMO

We describe the discovery and characterization of the supersoft topical JAK inhibitor 3(R), which is potent in biochemical and cellular assays as well as in human skin models. In blood, the neutral ester 3(R) is rapidly hydrolyzed (t1/2 ∼ 6 min) to the corresponding charged carboxylic acid 4 exhibiting >30-fold reduced permeability. Consequently, acid 4 does not reach the intracellular JAK kinases and is inactive in cellular assays and in blood. Thus, hydrolysis by blood esterases leads to the rapid deactivation of topically active ester 3(R) at a rate beyond the maximal hepatic clearance.


Assuntos
Inibidores de Janus Quinases , Humanos , Pele , Esterases , Hidrólise , Ésteres
9.
ACS Med Chem Lett ; 13(4): 658-664, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35450354

RESUMO

Inappropriate activation of TLR7 and TLR8 is linked to several autoimmune diseases, such as lupus erythematosus. Here we report on the efficient structure-based optimization of the inhibition of TLR8, starting from a co-crystal structure of a small screening hit. Further optimization of the physicochemical properties for cellular potency and expansion of the structure-activity relationship for dual potency finally resulted in a highly potent TLR7/8 antagonist with demonstrated in vivo efficacy after oral dosing.

10.
Bioorg Med Chem Lett ; 21(24): 7367-72, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22078216

RESUMO

The present study describes a novel series of ATP-competitive PKC inhibitors based on the 2,6-naphthyridine template. Example compounds potently inhibit the novel Protein Kinase C (PKC) isotypes δ, ε, η, θ (in particular PKCε/η, and display a 10-100-fold selectivity over the classical PKC isotypes. The prototype compound 11 was found to inhibit PKCθ-dependent pathways in vitro and in vivo. In vitro, a-CD3/a-CD28-induced lymphocyte proliferation could be effectively blocked in 10% rat whole blood. In mice, 11 dose-dependently inhibited Staphylococcus aureus enterotoxin B-triggered IL-2 serum levels after oral dosing.


Assuntos
Naftiridinas/química , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Administração Oral , Animais , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Enterotoxinas/toxicidade , Interleucina-2/sangue , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Camundongos , Naftiridinas/síntese química , Naftiridinas/farmacocinética , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacocinética , Estrutura Terciária de Proteína , Ratos , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
13.
J Med Chem ; 63(15): 8276-8295, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32786235

RESUMO

Inappropriate activation of endosomal TLR7 and TLR8 occurs in several autoimmune diseases, in particular systemic lupus erythematosus (SLE). Herein, the development of a TLR8 antagonist competition assay and its application for hit generation of dual TLR7/8 antagonists are reported. The structure-guided optimization of the pyridone hit 3 using this biochemical assay in combination with cellular and TLR8 cocrystal structural data resulted in the identification of a highly potent and selective TLR7/8 antagonist (27) with in vivo efficacy. The two key steps for optimization were (i) a core morph guided by a TLR7 sequence alignment to achieve a dual TLR7/8 antagonism profile and (ii) introduction of a fluorine in the piperidine ring to reduce its basicity, resulting in attractive oral pharmacokinetic (PK) properties and improved TLR8 binding affinity.


Assuntos
Lúpus Eritematoso Sistêmico/tratamento farmacológico , Piridonas/química , Piridonas/farmacologia , Receptor 7 Toll-Like/antagonistas & inibidores , Receptor 8 Toll-Like/antagonistas & inibidores , Animais , Células Cultivadas , Descoberta de Drogas , Humanos , Indazóis/química , Indazóis/farmacocinética , Indazóis/farmacologia , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , Piridonas/farmacocinética , Ratos Sprague-Dawley , Receptor 7 Toll-Like/química , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/química , Receptor 8 Toll-Like/metabolismo
14.
Antimicrob Agents Chemother ; 53(5): 1823-31, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19223625

RESUMO

The incidence of dengue fever epidemics has increased dramatically over the last few decades. However, no vaccine or antiviral therapies are available. Therefore, the need for safe and effective antiviral drugs has become imperative. The entry of dengue virus into a host cell is mediated by its major envelope (E) protein. The crystal structure of the E protein reveals a hydrophobic pocket that is presumably important for low-pH-mediated membrane fusion. High-throughput docking with this hydrophobic pocket was performed, and hits were evaluated in cell-based assays. Compound 6 was identified as one of the inhibitors and had an average 50% effective concentration of 119 nM against dengue virus serotype 2 in a human cell line. Mechanism-of-action studies demonstrated that compound 6 acts at an early stage during dengue virus infection. It arrests dengue virus in vesicles that colocalize with endocytosed dextran and inhibits NS3 expression. The inhibitors described in this report can serve as molecular probes for the study of the entry of flavivirus into host cells.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/patogenicidade , Bibliotecas de Moléculas Pequenas , Internalização do Vírus/efeitos dos fármacos , Animais , Antivirais/química , Sítios de Ligação , Linhagem Celular , Cricetinae , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/crescimento & desenvolvimento , Humanos , Modelos Moleculares , Relação Estrutura-Atividade , Proteínas do Envelope Viral/antagonistas & inibidores
15.
Heliyon ; 5(11): e02849, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31768440

RESUMO

OBJECTIVE: To identify an agonist of RXRα and RARα with reduced undesired profiles of all-trans retinoic acid for differentiation-inducing therapy of acute promyelocytic leukemia (APL), such as its susceptibility to P450 enzyme, induction of P450 enzyme, increased sequestration by cellular retinoic acid binding protein and increased expression of P-glycoprotein, a virtual screening was performed. RESULTS AND CONCLUSION: In this study, a phenyl-thiazolyl-benzoic acid derivative (PTB) was identified as a potent agonist of RXRα and RARα. PTB was characterized in nuclear receptor binding, reporter gene, cell differentiation and cell growth assays. PTB bound directly to RXRα and RARα, but not to PPARα, δ(ß) or γ. PTB fully activated reporter genes with enhancer elements for RXRα/RXRα, and partially activated reporter genes with enhancer elements for RARα/RXRα, PPARδ(ß) and PPARγ. Furthermore, PTB induced differentiation and inhibited the growth of human APL cells. Thus, PTB is a novel dual agonist of RXRα and RARα and works as both a differentiation inducer and a proliferation inhibitor to leukemic cells.

16.
ACS Chem Biol ; 14(4): 587-593, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30763067

RESUMO

The oncogenic V617F mutation lies in the pseudokinase domain of JAK2, marking it as a potential target for development of compounds that might inhibit the pathogenic activity of the mutant protein. We used differential scanning fluorimetry to identify compounds that bind the JAK2 pseudokinase domain. Crystal structures of five candidate compounds with the wild-type domain reveal their modes of binding. Exploration of analogs of screening hit BI-D1870 led to the identification of compound 2, a 123 nM ligand for the pseudokinase domain. Interestingly, crystal structures of the V617F domain in complex with two unrelated compounds reveal a conformation that is characteristic of the wild-type domain, rather than that previously observed for the V617F mutant. These structures suggest that certain ATP-site ligands can modulate the V617F allosteric site, thereby providing a mechanistic rationale for targeting the pseudokinase domain and a structural foundation for development of more potent and pseudokinase-selective compounds.


Assuntos
Trifosfato de Adenosina/metabolismo , Janus Quinase 2/metabolismo , Mutação , Linhagem Celular , Cristalografia por Raios X , Humanos , Janus Quinase 2/química , Janus Quinase 2/genética , Ligantes , Fosforilação , Conformação Proteica
17.
J Med Chem ; 61(15): 6724-6735, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-29990434

RESUMO

The transcription factor RORγt is an attractive drug-target due to its role in the differentiation of IL-17 producing Th17 cells that play a critical role in the etiopathology of several autoimmune diseases. Identification of starting points for RORγt inverse agonists with good properties has been a challenge. We report the identification of a fragment hit and its conversion into a potent inverse agonist through fragment optimization, growing and merging efforts. Further analysis of the binding mode revealed that inverse agonism was achieved by an unusual mechanism. In contrast to other reported inverse agonists, there is no direct interaction or displacement of helix 12 observed in the crystal structure. Nevertheless, compound 9 proved to be efficacious in a delayed-type hypersensitivity (DTH) inflammation model in rats.


Assuntos
Descoberta de Drogas , Agonismo Inverso de Drogas , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Animais , Domínio Catalítico , Modelos Animais de Doenças , Feminino , Inflamação/metabolismo , Modelos Moleculares , Ratos
18.
Front Immunol ; 8: 1824, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375547

RESUMO

Heterozygous mutations in the cytotoxic T lymphocyte antigen-4 (CTLA-4) are associated with lymphadenopathy, autoimmunity, immune dysregulation, and hypogammaglobulinemia in about 70% of the carriers. So far, the incomplete penetrance of CTLA-4 haploinsufficiency has been attributed to unknown genetic modifiers, epigenetic changes, or environmental effects. We sought to identify potential genetic modifiers in a family with differential clinical penetrance of CTLA-4 haploinsufficiency. Here, we report on a rare heterozygous gain-of-function mutation in Janus kinase-3 (JAK3) (p.R840C), which is associated with the clinical manifestation of CTLA-4 haploinsufficiency in a patient carrying a novel loss-of-function mutation in CTLA-4 (p.Y139C). While the asymptomatic parents carry either the CTLA-4 mutation or the JAK3 variant, their son has inherited both heterozygous mutations and suffers from hypogammaglobulinemia combined with autoimmunity and lymphoid hyperplasia. Although the patient's lymph node and spleen contained many hyperplastic germinal centers with follicular helper T (TFH) cells and immunoglobulin (Ig) G-positive B cells, plasma cell, and memory B cell development was impaired. CXCR5+PD-1+TIGIT+ TFH cells contributed to a large part of circulating T cells, but they produced only very low amounts of interleukin (IL)-4, IL-10, and IL-21 required for the development of memory B cells and plasma cells. We, therefore, suggest that the combination of the loss-of-function mutation in CTLA-4 with the gain-of-function mutation in JAK3 directs the differentiation of CD4 T cells into dysfunctional TFH cells supporting the development of lymphadenopathy, hypogammaglobulinemia, and immunodeficiency. Thus, the combination of rare genetic heterozygous variants that remain clinically unnoticed individually may lead to T cell hyperactivity, impaired memory B cell, and plasma cell development resulting finally in combined immunodeficiency.

19.
J Med Chem ; 58(4): 1950-63, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25633741
20.
Cancer Cell ; 28(1): 29-41, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26175414

RESUMO

A variety of cancers depend on JAK2 signaling, including the high-risk subset of B cell acute lymphoblastic leukemias (B-ALLs) with CRLF2 rearrangements. Type I JAK2 inhibitors induce paradoxical JAK2 hyperphosphorylation in these leukemias and have limited activity. To improve the efficacy of JAK2 inhibition in B-ALL, we developed the type II inhibitor CHZ868, which stabilizes JAK2 in an inactive conformation. CHZ868 potently suppressed the growth of CRLF2-rearranged human B-ALL cells, abrogated JAK2 signaling, and improved survival in mice with human or murine B-ALL. CHZ868 and dexamethasone synergistically induced apoptosis in JAK2-dependent B-ALLs and further improved in vivo survival compared to CHZ868 alone. These data support the testing of type II JAK2 inhibition in patients with JAK2-dependent leukemias and other disorders.


Assuntos
Aminopiridinas/administração & dosagem , Antineoplásicos/administração & dosagem , Benzimidazóis/administração & dosagem , Dexametasona/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Janus Quinase 2/antagonistas & inibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Aminopiridinas/farmacologia , Animais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Apoptose , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Citoproteção/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Janus Quinase 2/química , Janus Quinase 2/genética , Camundongos , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA