Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Org Biomol Chem ; 19(3): 645-652, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33393550

RESUMO

Herein, we report a mild and efficient hydroxymethylation of quinolines via an iron promoted cross-dehydrogenative coupling reaction under external acid free conditions. Various hydroxyalkyl substituted quinolines were achieved in excellent yields with well tolerated functional groups. Importantly, a few of the hydroxylmethylated quinolines were further transformed into respective aldehydes, and were successfully utilized for the synthesis of alkaloid arsindoline-A and its derivatives.

2.
Photochem Photobiol ; 96(6): 1182-1190, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32621763

RESUMO

Herein, we report the versatile synthetic strategy and opto-electronic properties for the phosphorylation of BODIPY derivatives 5aa-5ak by substituting with an electron-donating/withdrawing group at the ortho position. Nevertheless, this new methodology relatively promotes the tolerance of the aldehyde moiety and the high yield for the synthesis of BODIPY o-OPhos derivatives. The photophysical studies suggest improved optical properties due to the inductive effect of various electron-donating/withdrawing groups. The UV-visible and the emission data suggest that BODIPY o-OPhos derivatives emphasize the property of the excited states with an increase in fluorescence intensity and high quantum yields due to the presence of bulky phospsho-triester at the meso- position which hinders the free rotation around the C-Ar bond and facilitates the development of OLEDs and various organophosphorus warfare agents. Electrochemical studies reveal 5ak depicts the ease of redox activity amongst the 5aa-5ak derivatives. The density functional theory indicates the highest occupied molecular orbital on the BODIPY moiety whereas the lowest unoccupied molecular orbital delocalized on BODIPY and the phospho-triester moieties. Thus, the unique development of the novel BODIPY derivatives with improved optical and redox properties pave the way for fluorescent probes and bioimaging techniques.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Cristalografia por Raios X , Fosforilação , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA