Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 59(5): 2150-2158, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30908030

RESUMO

Designing organic saccharide sensors for use in aqueous solution is a nontrivial endeavor. Incorporation of hydrogen bonding groups on a sensor's receptor unit to target saccharides is an obvious strategy but not one that is likely to ensure analyte-receptor interactions over analyte-solvent or receptor-solvent interactions. Phenylboronic acids are known to reversibly and covalently bind saccharides (diols in general) with highly selective affinity in aqueous solution. Therefore, recent work has sought to design such sensors and understand their mechanism for allowing fluorescence with bound saccharides. In past work, binding orientations of several saccharides were determined to dimethylaminomethylphenylboronic acid (DMPBA) receptors with an anthracene fluorophore; however, the binding orientation of d-fructose to such a sensor could not be determined. In this work, we investigate the potential binding modes by generating 20 possible bidentate and six possible tridentate modes between fructose and DMPBA, a simplified receptor model. Gas phase and implicit solvent geometry optimizations, with a myriad functional/basis set pairs, were carried out to identify the lowest energy bidentate and tridentate binding modes of d-fructose to DMPBA. An interesting hydrogen transfer was observed during selected bidentate gas phase optimizations; this transfer suggests a strong sharing of the hydrogen atom between the boronate hydroxyl and amine nitrogen.


Assuntos
Ácidos Borônicos/química , Frutose/análise , Frutose/química , Espectrometria de Fluorescência/instrumentação , Modelos Moleculares , Conformação Molecular
2.
J Am Chem Soc ; 139(15): 5568-5578, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28358506

RESUMO

ortho-Aminomethylphenylboronic acid-based receptors with appended fluorophores are commonly used as molecular sensors for saccharides in aqueous media. The mechanism for fluorescence modulation in these sensors has been attributed to some form of photoinduced electron transfer (PET) quenching, which is diminished in the presence of saccharides. Using a well-known boronic acid-based saccharide sensor (3), this work reveals a new mechanism for fluorescence turn-on in these types of sensors. Compound 3 exhibits an excimer, and the associated ground-state aggregation is responsible for fluorescence modulation under certain conditions. When fructose was titrated into a solution of 3 in 2:1 water/methanol with NaCl, the fluorescence intensity increased. Yet, when the same titration was repeated in pure methanol, a solvent in which the sensor does not aggregate, no fluorescence response to fructose was observed. This reveals that the fluorescence increase is not fully associated with fructose binding, but instead disaggregation of the sensor in the presence of fructose. Further, an analogue of the sensor that does not contain a boronic acid (4) responded nearly identically to 3 in the presence of fructose, despite having no functional group with which to bind the saccharide. This further supports the claim that fluorescence modulation is not primarily a result of binding, but of disaggregation. Using an indicator displacement assay and isothermal titration calorimetry, it was confirmed that fructose does indeed bind to the sensor. Thus, our evidence reveals that while binding occurs with fructose in the aqueous solvent system used, it is not related to the majority of the fluorescence modulation. Instead, disaggregation dominates the signal turn-on, and is thus a mechanism that should be investigated in other ortho-aminomethylphenylboronic acid-based sensors.


Assuntos
Carboidratos/análise , Fluorescência , Metilaminas/química , Transporte de Elétrons , Metanol/química , Modelos Moleculares , Estrutura Molecular , Processos Fotoquímicos , Cloreto de Sódio/química , Espectrometria de Fluorescência , Água/química
3.
J Chem Inf Model ; 53(11): 2951-61, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-24087936

RESUMO

Hydroxyurea (HU) is the only FDA approved medication for treating sickle cell disease in adults. The primary mechanism of action is pharmacological elevation of nitric oxide (NO) levels which induces propagation of fetal hemoglobin. HU is known to undergo redox reactions with heme based enzymes like hemoglobin and catalase to produce NO. However, specific details about the HU based NO release remain unknown. Experimental studies indicate that interaction of HU with human catalase compound I produces NO. Presently, we combine flexible receptor-flexible substrate induced fit docking (IFD) with energy decomposition analyses to examine the atomic level details of a possible key step in the clinical conversion of HU to NO. Substrate binding modes of nine HU analogs with catalase compound I were investigated to determine the essential properties necessary for effective NO release. Three major binding orientations were found that provide insight into the possible reaction mechanisms for producing NO. Further results show that anion/radical intermediates produced as part of these mechanisms would be stabilized by hydrogen bonding interactions from distal residues His75, Asn148, Gln168, and oxoferryl-heme. These details will ideally contribute to both a clearer mechanistic picture and provide insights for future structure based drug design efforts.


Assuntos
Catalase/química , Heme/química , Hidroxiureia , Óxido Nítrico/química , Asparagina/química , Domínio Catalítico , Glicina/química , Histidina/química , Humanos , Ligação de Hidrogênio , Hidroxiureia/análogos & derivados , Hidroxiureia/química , Isoenzimas/química , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade , Termodinâmica
4.
J Chem Inf Model ; 52(5): 1288-97, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22519847

RESUMO

Hydroxyurea is the only FDA approved treatment of sickle cell disease. It is believed that the primary mechanism of action is associated with the pharmacological elevation of nitric oxide in the blood; however, the exact details of this are still unclear. In the current work, we investigate the atomic level details of this process using a combination of flexible-ligand/flexible-receptor virtual screening coupled with energetic analysis that decomposes interaction energies. Utilizing these methods, we were able to elucidate the previously unknown substrate binding modes of a series of hydroxyurea analogs to hemoglobin and the concomitant structural changes of the enzyme. We identify a backbone carbonyl that forms a hydrogen bond with bound substrates. Our results are consistent with kinetic and electron paramagnetic resonance (EPR) measurements of hydroxyurea-hemoglobin reactions, and a full mechanism is proposed that offers new insights into possibly improving substrate binding and/or reactivity.


Assuntos
Simulação por Computador , Hidroxiureia/farmacologia , Modelos Moleculares , Doadores de Óxido Nítrico/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Hemoglobinas/química , Humanos , Ligantes , Ligação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade , Especificidade por Substrato
5.
J Mol Graph Model ; 71: 104-115, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27894019

RESUMO

In 2000, a novel secondary metabolite (erebusinone, Ereb) was isolated from the Antarctic sea sponge, Isodictya erinacea. The bioactivity of Ereb was investigated, and it was found to inhibit molting when fed to the arthropod species Orchomene plebs. Xanthurenic acid (XA) is a known endogenous molt regulator present in arthropods. Experimental studies have confirmed that XA inhibits molting by binding to either (or both) of two P450 enzymes (CYP315a1 or CYP314a1) that are responsible for the final two hydroxylations in the production of the molt-inducing hormone, 20-hydroxyecdysone (20E). The lack of crystal structures and biochemical assays for CYP315a1 or CYP314a1, has prevented further experimental exploration of XA and Ereb's molt inhibition mechanisms. Herein, a wide array of computational techniques - homology modeling, molecular dynamics simulations, binding site bioinformatics, flexible receptor-flexible ligand docking, and molecular mechanics-generalized Born surface area calculations - have been employed to elucidate the structure-function relationships between the aforementioned P450s and the two described small molecule inhibitors (Ereb and XA). Results indicate that Ereb likely targets CYP315a1 by interacting with a network of aromatic residues in the binding site, while XA may inhibit both CYP315a1 and CYP314a1 because of its aromatic, as well as charged nature.


Assuntos
Alcaloides/química , Organismos Aquáticos/química , Muda/efeitos dos fármacos , Poríferos/química , Xanturenatos/química , Sequência de Aminoácidos/efeitos dos fármacos , Animais , Regiões Antárticas , Organismos Aquáticos/metabolismo , Artrópodes/efeitos dos fármacos , Sítios de Ligação , Sistema Enzimático do Citocromo P-450/química , Simulação de Dinâmica Molecular , Poríferos/metabolismo , Ligação Proteica/efeitos dos fármacos
6.
J Phys Chem B ; 120(37): 9922-34, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27537621

RESUMO

1-Deoxy-d-xylulose 5-phosphate synthase (DXS) is a thiamin diphosphate (TDP) dependent enzyme that marks the beginning of the methylerythritol 4-phosphate isoprenoid biosynthesis pathway. The mechanism of action for DXS is still poorly understood and begins with the formation of a thiazolium ylide. This TDP activation step is thought to proceed through an intramolecular deprotonation by the 4'-aminopyrimidine ring of TDP; however, this step would occur only after an initial deprotonation of its own 4'-amino group. The mechanism of the initial deprotonation has been hypothesized, by analogy to transketolases, to occur via a histidine or an active site water molecule. Results from hybrid quantum mechanical/molecular mechanical (QM/MM) reaction path calculations reveal an ∼10 kcal/mol difference in transition state energies, favoring a water mediated mechanism over direct deprotonation by histidine. This difference was determined to be largely governed by electrostatic changes induced by conformational variations in the active site. Additionally, mutagenesis studies reveal DXS to be an evolutionarily resilient enzyme. Particularly, we hypothesize that residues H82 and H304 may act in a compensatory fashion if the other is lost due to mutation. Further, nucleus-independent chemical shifts (NICSs) and aromatic stabilization energy (ASE) calculations suggest that reduction in TDP aromaticity also serves as a factor for regulating ylide formation and controlling reactivity.


Assuntos
Difosfatos/metabolismo , Tiamina/metabolismo , Transferases/metabolismo , Deinococcus/enzimologia , Difosfatos/química , Conformação Molecular , Teoria Quântica , Tiamina/química , Transferases/química
7.
J Chem Theory Comput ; 10(2): 855-864, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24803854

RESUMO

Bacterial resistance to standard (i.e., ß-lactam-based) antibiotics has become a global pandemic. Simultaneously, research into the underlying causes of resistance has slowed substantially, although its importance is universally recognized. Key to unraveling critical details is characterization of the noncovalent interactions that govern binding and specificity (DD-peptidases, antibiotic targets, versus ß-lactamases, the evolutionarily derived enzymes that play a major role in resistance) and ultimately resistance as a whole. Herein, we describe a detailed investigation that elicits new chemical insights into these underlying intermolecular interactions. Benzylpenicillin and a novel ß-lactam peptidomimetic complexed to the Stremptomyces R61 peptidase are examined using an arsenal of computational techniques: MD simulations, QM/MM calculations, charge perturbation analysis, QM/MM orbital analysis, bioinformatics, flexible receptor/flexible ligand docking, and computational ADME predictions. Several key molecular level interactions are identified that not only shed light onto fundamental resistance mechanisms, but also offer explanations for observed specificity. Specifically, an extended π-π network is elucidated that suggests antibacterial resistance has evolved, in part, due to stabilizing aromatic interactions. Additionally, interactions between the protein and peptidomimetic substrate are identified and characterized. Of particular interest is a water-mediated salt bridge between Asp217 and the positively charged N-terminus of the peptidomimetic, revealing an interaction that may significantly contribute to ß-lactam specificity. Finally, interaction information is used to suggest modifications to current ß-lactam compounds that should both improve binding and specificity in DD-peptidases and their physiochemical properties.

8.
J Med Chem ; 51(22): 7144-53, 2008 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-18973327

RESUMO

O(6)-Benzylguanine is an irreversible inactivator of O(6)-alkylguanine-DNA alkyltransferase currently in clinical trials to overcome alkyltransferase-mediated resistance to certain cancer chemotherapeutic alkylating agents. In order to produce more soluble alkyltransferase inhibitors, we have synthesized three aminomethyl-substituted O(6)-benzylguanines and the three methyl analogs and found that the substitution of aminomethyl at the meta-position greatly enhances inactivation of alkyltransferase, whereas para-substitution has little effect and ortho-substitution virtually eliminates activity. Molecular modeling of their interactions with alkyltransferase provided a molecular explanation for these results. The square of the correlation coefficient (R(2)) obtained between E-model scores (obtained from GLIDE XP/QPLD docking calculations) vs log(ED(50)) values via a linear regression analysis was 0.96. The models indicate that the ortho-substitution causes a steric clash interfering with binding, whereas the meta-aminomethyl substitution allows an interaction of the amino group to generate an additional hydrogen bond with the protein.


Assuntos
Inibidores Enzimáticos/farmacologia , Guanina/análogos & derivados , O(6)-Metilguanina-DNA Metiltransferase/antagonistas & inibidores , Simulação por Computador , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Guanina/síntese química , Guanina/química , Guanina/farmacologia , Humanos , Ligação de Hidrogênio , Ligantes , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA