Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Vis ; 24(6): 2, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38833255

RESUMO

The spectral locus of unique yellow was determined for flashes of different sizes (<11 arcmin) and durations (<500 ms) presented in and near the fovea. An adaptive optics scanning laser ophthalmoscope was used to minimize the effects of higher-order aberrations during simultaneous stimulus delivery and retinal imaging. In certain subjects, parafoveal cones were classified as L, M, or S, which permitted the comparison of unique yellow measurements with variations in local L/M ratios within and between observers. Unique yellow shifted to longer wavelengths as stimulus size or duration was reduced. This effect is most pronounced for changes in size and more apparent in the fovea than in the parafovea. The observed variations in unique yellow are not entirely predicted from variations in L/M ratio and therefore implicate neural processes beyond photoreception.


Assuntos
Fóvea Central , Estimulação Luminosa , Células Fotorreceptoras Retinianas Cones , Humanos , Estimulação Luminosa/métodos , Células Fotorreceptoras Retinianas Cones/fisiologia , Fóvea Central/fisiologia , Percepção de Cores/fisiologia , Retina/fisiologia , Adulto , Oftalmoscopia/métodos
2.
J Vis ; 23(12): 4, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37801322

RESUMO

The 2-photon effect in vision occurs when two photons of the same wavelength are absorbed by cone photopigment in the retina and create a visual sensation matching the appearance of light close to half their wavelength. This effect is especially salient for infrared light, where humans are mostly insensitive to 1-photon isomerizations and thus any perception is dominated by 2-photon isomerizations. This phenomenon can be made more readily visible using short-pulsed lasers, which increase the likelihood of 2-photon excitation by making photon arrivals at the retina more concentrated in time. Adaptive optics provides another avenue for enhancing the 2-photon effect by focusing light more tightly at the retina, thereby increasing the spatial concentration of incident photons. This article makes three contributions. First, we demonstrate through color-matching experiments that an adaptive optics correction can provide a 25-fold increase in the luminance of the 2-photon effect-a boost equivalent to reducing pulse width by 96%. Second, we provide image-based evidence that the 2-photon effect occurs at the photoreceptor level. Third, we use our results to compute the specifications for a system that could utilize 2-photon vision and adaptive optics to image and stimulate the retina using a single infrared wavelength and reach luminance levels comparable to conventional displays.


Assuntos
Células Fotorreceptoras Retinianas Cones , Visão Ocular , Humanos , Retina
3.
J Opt Soc Am A Opt Image Sci Vis ; 35(4): B122-B129, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29603965

RESUMO

Using near-threshold stimuli, human color sensitivity has been shown to decrease across the visual field, likely due in part to physiological differences between the fovea and periphery. It remains unclear to what extent this holds true for suprathreshold stimuli. The current study used suprathreshold contrast matching to examine how perceived contrast varies with eccentricity along the cardinal axes in a cone-opponent space. Our data show that, despite increasing stimulus size in the periphery, the LM axis stimuli were still perceived as reduced in contrast, whereas the S axis perceived contrast was observed to increase with eccentricity.


Assuntos
Percepção de Cores/fisiologia , Sensibilidades de Contraste/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Adulto , Testes de Percepção de Cores , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Limiar Sensorial , Campos Visuais/fisiologia , Adulto Jovem
4.
J Neurosci Res ; 95(1-2): 617-625, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27870438

RESUMO

This Mini-Review summarizes a wide range of sex differences in the human visual system, with a primary focus on sex differences in visual perception and its neural basis. We highlight sex differences in both basic and high-level visual processing, with evidence from behavioral, neurophysiological, and neuroimaging studies. We argue that sex differences in human visual processing, no matter how small or subtle, support the view that females and males truly see the world differently. We acknowledge some of the controversy regarding sex differences in human vision and propose that such controversy should be interpreted as a source of motivation for continued efforts to assess the validity and reliability of published sex differences and for continued research on sex differences in human vision and the nervous system in general. © 2016 Wiley Periodicals, Inc.


Assuntos
Caracteres Sexuais , Visão Ocular/fisiologia , Vias Visuais/fisiologia , Humanos
5.
Optom Vis Sci ; 92(4): 480-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25785530

RESUMO

PURPOSE: Clinical color vision evaluation has been based primarily on the same set of tests for the past several decades. Recently, computer-based color vision tests have been devised, and these have several advantages but are still not widely used. In this study, we evaluated the Waggoner Computerized Color Vision Test (CCVT), which was developed for widespread use with common computer systems. METHODS: A sample of subjects with (n = 59) and without (n = 361) color vision deficiency (CVD) were tested on the CCVT, the anomaloscope, the Richmond HRR (Hardy-Rand-Rittler) (4th edition), and the Ishihara test. The CCVT was administered in two ways: (1) on a computer monitor using its default settings and (2) on one standardized to a correlated color temperature (CCT) of 6500 K. Twenty-four subjects with CVD performed the CCVT both ways. Sensitivity, specificity, and correct classification rates were determined. RESULTS: The screening performance of the CCVT was good (95% sensitivity, 100% specificity). The CCVT classified subjects as deutan or protan in agreement with anomaloscopy 89% of the time. It generally classified subjects as having a more severe defect compared with other tests. Results from 18 of the 24 subjects with CVD tested under both default and calibrated CCT conditions were the same, whereas the results from 6 subjects had better agreement with other test results when the CCT was set. CONCLUSIONS: The Waggoner CCVT is an adequate color vision screening test with several advantages and appears to provide a fairly accurate diagnosis of deficiency type. Used in conjunction with other color vision tests, it may be a useful addition to a color vision test battery.


Assuntos
Testes de Percepção de Cores/métodos , Defeitos da Visão Cromática/diagnóstico , Diagnóstico por Computador , Adulto , Visão de Cores/fisiologia , Defeitos da Visão Cromática/classificação , Voluntários Saudáveis , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
6.
Vision Res ; 184: 14-22, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33773293

RESUMO

Anomalous trichromacy is a form of color vision deficiency characterized by the presence of three cone types, but with shifted spectral sensitivities for L or M cones, causing a red-green color deficiency. However, long-term adaptation to this impoverished opponent input may allow for a more normal color experience at the suprathreshold level ("compensation"). Recent experimental evidence points to the presence of compensation in some tasks. The current study used threshold detection, suprathreshold contrast matching, and a reaction-time task to compare contrast coding in normal and anomalous observers along the cardinal cone-opponent axes. Compared to color normals, anomals required more L-M contrast, but not S contrast, to detect stimuli and to match an achromatic reference stimulus. Reaction times were measured for several contrast levels along the two cone-opponent axes. Anomals had higher overall reaction times, but their reaction-time versus contrast functions could be matched to those of controls simply by scaling contrast by the detection thresholds. Anomalous participants were impaired relative to controls for L-M stimuli in all three tasks. However, the contrast losses were three times greater for thresholds and reaction times than for suprathreshold matches. These data provide evidence for compensation in anomalous trichromats, but highlight the role that the experimental task plays in revealing it.


Assuntos
Percepção de Cores , Defeitos da Visão Cromática , Sensibilidades de Contraste , Humanos , Células Fotorreceptoras Retinianas Cones
7.
Curr Biol ; 31(5): 936-942.e4, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33326771

RESUMO

Anomalous trichromacy is a common form of congenital color deficiency resulting from a genetic alteration in the photopigments of the eye's light receptors. The changes reduce sensitivity to reddish and greenish hues, yet previous work suggests that these observers may experience the world to be more colorful than their altered receptor sensitivities would predict, potentially indicating an amplification of post-receptoral signals. However, past evidence suggesting such a gain adjustment rests on subjective measures of color appearance or salience. We directly tested for neural amplification by using fMRI to measure cortical responses in color-anomalous and normal control observers. Color contrast response functions were measured in two experiments with different tasks to control for attentional factors. Both experiments showed a predictable reduction in chromatic responses for anomalous trichromats in primary visual cortex. However, in later areas V2v and V3v, chromatic responses in the two groups were indistinguishable. Our results provide direct evidence for neural plasticity that compensates for the deficiency in the initial receptor color signals and suggest that the site of this compensation is in early visual cortex.


Assuntos
Percepção de Cores/fisiologia , Defeitos da Visão Cromática/fisiopatologia , Imageamento por Ressonância Magnética , Córtex Visual Primário/fisiopatologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA