Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 3(1): 86-95, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023767

RESUMO

Simultaneous integration of photon emission and biocompatibility into nanoparticles is an interesting strategy to develop applications of advanced optical materials. In this work, we present the synthesis of biocompatible optical nanocomposites from the combination of near-infrared luminescent lanthanide nanoparticles and water-soluble chitosan. NaYF4:Yb,Er upconverting nanocrystal guests and water-soluble chitosan hosts are prepared and integrated together into biofunctional optical composites. The control of aqueous dissolution, gelation, assembly, and drying of NaYF4:Yb,Er nanocolloids and chitosan liquids allowed us to design novel optical structures of spongelike aerogels and beadlike microspheres. Well-defined shape and near-infrared response lead upconverting nanocrystals to serve as photon converters to couple with plasmonic gold (Au) nanoparticles. Biocompatible chitosan-stabilized Au/NaYF4:Yb,Er nanocomposites are prepared to show their potential use in biomedicine as we find them exhibiting a half-maximal effective concentration (EC50) of 0.58 mg mL-1 for chitosan-stabilized Au/NaYF4:Yb,Er nanorods versus 0.24 mg mL-1 for chitosan-stabilized NaYF4:Yb,Er after 24 h. As a result of their low cytotoxicity and upconverting response, these novel materials hold promise to be interesting for biomedicine, analytical sensing, and other applications.

2.
J Gerontol A Biol Sci Med Sci ; 70(9): 1077-87, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25227129

RESUMO

Myostatin (mstn) blockade, resulting in muscle hypertrophy, is a promising therapy to counteract age-related muscle loss. However, oxidative and mitochondrial deficit observed in young mice with myostatin inhibition could be detrimental with aging. The aim of this study was (a) to bring original data on metabolic and mitochondrial consequences of mstn inhibition in old mice, and (b) to examine whether 4-weeks of AICAR treatment, a pharmacological compound known to upregulate oxidative metabolism, may be useful to improve exercise capacity and mitochondrial deficit of 20-months mstn KO versus wild-type (WT) mice. Our results show that despite the enlarged muscle mass, the oxidative and mitochondrial deficit associated with reduced endurance running capacity is maintained in old mstn KO mice but not worsened by aging. Importantly, AICAR treatment induced a significant beneficial effect on running limit time only in old mstn KO mice, with a marked increase in PGC-1α expression and slight beneficial effects on mitochondrial function. We showed that AICAR effects were autophagy-independent. This study underlines the relevance of aged muscle remodelling by complementary approaches that impact both muscle mass and function, and suggest that mstn inhibition and aerobic metabolism activators should be co-developed for delaying age-related deficits in skeletal muscle.


Assuntos
Envelhecimento , Aminoimidazol Carboxamida/análogos & derivados , Hipoglicemiantes/farmacologia , Músculo Esquelético/metabolismo , Miostatina/deficiência , Condicionamento Físico Animal , Ribonucleotídeos/farmacologia , Aminoimidazol Carboxamida/farmacologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Proteína Beclina-1 , Antígenos CD36/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Hipertrofia , Masculino , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/patologia , Miostatina/genética , Tamanho do Órgão , Consumo de Oxigênio , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Resistência Física , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
3.
Biores Open Access ; 3(6): 286-96, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25469314

RESUMO

We present a detailed characterization of fibronectin (FN) adsorption and cell adhesion on poly(ethyl acrylate) (PEA) and poly(methyl acrylate) (PMA), two polymers with very similar physicochemical properties and chemical structure, which differ in one single methyl group in the lateral chain of the polymer. The globular solution conformation of FN was retained following adsorption onto PMA, whereas spontaneous organization of FN into protein (nano) networks occurred on PEA. This distinct distribution of FN at the material interface promoted a different availability, measured via monoclonal antibody binding, of two domains that facilitated integrin binding to FN: FNIII10 (RGD sequence) and FNIII9 (PHSRN synergy sequence). The enhanced exposure of the synergy domain on PEA compared to PMA triggered different focal adhesion assemblies: L929 fibroblasts showed a higher fraction of smaller focal plaques on PMA (40%) than on PEA (20%). Blocking experiments with monoclonal antibodies against FNIII10 (HFN7.1) and FNIII9 (mAb1937) confirmed the ability of these polymeric substrates to modulate FN conformation. Overall, we propose a simple and versatile material platform that can be used to tune the presentation of a main extracellular matrix protein (FN) to cells, for applications than span from tissue engineering to disease biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA