Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684626

RESUMO

Wearable sensors have increasingly been applied in healthcare to generate data and monitor patients unobtrusively. Their application for Brain-Computer Interfaces (BCI) allows for unobtrusively monitoring one's cognitive state over time. A particular state relevant in multiple domains is cognitive fatigue, which may impact performance and attention, among other capabilities. The monitoring of this state will be applied in real learning settings to detect and advise on effective break periods. In this study, two functional near-infrared spectroscopy (fNIRS) wearable devices were employed to build a BCI to automatically detect the state of cognitive fatigue using machine learning algorithms. An experimental procedure was developed to effectively induce cognitive fatigue that included a close-to-real digital lesson and two standard cognitive tasks: Corsi-Block task and a concentration task. Machine learning models were user-tuned to account for the individual dynamics of each participant, reaching classification accuracy scores of around 70.91 ± 13.67 %. We concluded that, although effective for some subjects, the methodology needs to be individually validated before being applied. Moreover, time on task was not a particularly determining factor for classification, i.e., to induce cognitive fatigue. Further research will include other physiological signals and human-computer interaction variables.


Assuntos
Interfaces Cérebro-Computador , Dispositivos Eletrônicos Vestíveis , Algoritmos , Cognição , Humanos , Aprendizado de Máquina , Espectroscopia de Luz Próxima ao Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA