Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Neurochem ; 168(5): 910-954, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38183680

RESUMO

Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.


Assuntos
Encéfalo , Metabolismo Energético , Animais , Humanos , Encéfalo/metabolismo
2.
Neurobiol Dis ; 182: 106132, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37094775

RESUMO

Ageing is a key factor in the development of cognitive decline and dementia, an increasing and challenging problem of the modern world. The most commonly diagnosed cognitive decline is related to Alzheimer's disease (AD), the pathophysiology of which is poorly understood. Several hypotheses have been proposed. The cholinergic hypothesis is the oldest, however, recently the noradrenergic system has been considered to have a role as well. The aim of this review is to provide evidence that supports the view that an impaired noradrenergic system is causally linked to AD. Although dementia is associated with neurodegeneration and loss of neurons, this likely develops due to a primary failure of homeostatic cells, astrocytes, abundant and heterogeneous neuroglial cells in the central nervous system (CNS). The many functions that astrocytes provide to maintain the viability of neural networks include the control of ionic balance, neurotransmitter turnover, synaptic connectivity and energy balance. This latter function is regulated by noradrenaline, released from the axon varicosities of neurons arising from the locus coeruleus (LC), the primary site of noradrenaline release in the CNS. The demise of the LC is linked to AD, whereby a hypometabolic CNS state is observed clinically. This is likely due to impaired release of noradrenaline in the AD brain during states of arousal, attention and awareness. These functions controlled by the LC are needed for learning and memory formation and require activation of the energy metabolism. In this review, we address first the process of neurodegeneration and cognitive decline, highlighting the function of astrocytes. Cholinergic and/or noradrenergic deficits lead to impaired astroglial function. Then, we focus on adrenergic control of astroglial aerobic glycolysis and lipid droplet metabolism, which play a protective role but also promote neurodegeneration under some circumstances, supporting the noradrenergic hypothesis of cognitive decline. We conclude that targeting astroglial metabolism, glycolysis and/or mitochondrial processes may lead to important new developments in the future when searching for medicines to prevent or even halt cognitive decline.


Assuntos
Adrenérgicos , Doença de Alzheimer , Humanos , Astrócitos/metabolismo , Metabolismo dos Lipídeos , Norepinefrina/metabolismo , Doença de Alzheimer/metabolismo , Locus Cerúleo/metabolismo , Glicólise/fisiologia
3.
Glia ; 69(12): 2899-2916, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34406698

RESUMO

The plasticity of astrocytes is fundamental for their principal function, maintaining homeostasis of the central nervous system throughout life, and is associated with diverse exposomal challenges. Here, we used cultured astrocytes to investigate at subcellular level basic cell processes under controlled environmental conditions. We compared astroglial functional and signaling plasticity in standard serum-containing growth medium, a condition mimicking pathologic conditions, and in medium without serum, favoring the acquisition of arborized morphology. Using opto-/electrophysiologic techniques, we examined cell viability, expression of astroglial markers, vesicle dynamics, and cytosolic Ca2+ and cAMP signaling. The results revealed altered vesicle dynamics in arborized astrocytes that was associated with increased resting [Ca2+ ]i and increased subcellular heterogeneity in [Ca2+ ]i , whereas [cAMP]i subcellular dynamics remained stable in both cultures, indicating that cAMP signaling is less prone to plastic remodeling than Ca2+ signaling, possibly also in in vivo contexts.


Assuntos
Astrócitos , Transdução de Sinais , Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Células Cultivadas
4.
Glia ; 69(6): 1540-1562, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33609060

RESUMO

When the brain is in a pathological state, the content of lipid droplets (LDs), the lipid storage organelles, is increased, particularly in glial cells, but rarely in neurons. The biology and mechanisms leading to LD accumulation in astrocytes, glial cells with key homeostatic functions, are poorly understood. We imaged fluorescently labeled LDs by microscopy in isolated and brain tissue rat astrocytes and in glia-like cells in Drosophila brain to determine the (sub)cellular localization, mobility, and content of LDs under various stress conditions characteristic for brain pathologies. LDs exhibited confined mobility proximal to mitochondria and endoplasmic reticulum that was attenuated by metabolic stress and by increased intracellular Ca2+ , likely to enhance the LD-organelle interaction imaged by electron microscopy. When de novo biogenesis of LDs was attenuated by inhibition of DGAT1 and DGAT2 enzymes, the astrocyte cell number was reduced by ~40%, suggesting that in astrocytes LD turnover is important for cell survival and/or proliferative cycle. Exposure to noradrenaline, a brain stress response system neuromodulator, and metabolic and hypoxic stress strongly facilitated LD accumulation in astrocytes. The observed response of stressed astrocytes may be viewed as a support for energy provision, but also to be neuroprotective against the stress-induced lipotoxicity.


Assuntos
Astrócitos , Animais , Drosophila , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Mitocôndrias , Ratos
5.
J Neurosci Res ; 99(4): 1084-1098, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33491223

RESUMO

During cognitive efforts mediated by local neuronal networks, approximately 20% of additional energy is required; this is mediated by chemical messengers such as noradrenaline (NA). NA targets astroglial aerobic glycolysis, the hallmark of which is the end product l-lactate, a fuel for neurons. Biochemical studies have revealed that astrocytes exhibit a prominent glycogen shunt, in which a portion of d-glucose molecules entering the cytoplasm is transiently incorporated into glycogen, a buffer and source of d-glucose during increased energy demand. Here, we studied single astrocytes by measuring cytosolic L-lactate ([lac]i ) with the FRET nanosensor Laconic. We examined whether NA-induced increase in [lac]i is influenced by: (a) 2-deoxy-d-glucose (2-DG, 3 mM), a molecule that enters the cytosol and inhibits the glycolytic pathway; (b) 1,4-dideoxy-1,4-imino-d-arabinitol (DAB, 300 µM), a potent inhibitor of glycogen phosphorylase and glycogen degradation; and (c) 3-nitropropionic acid (3-NPA, 1 mM), an inhibitor of the Krebs cycle. The results of these pharmacological experiments revealed that d-glucose uptake is essential for the NA-induced increase in [lac]i , and that this exclusively arises from glycogen degradation, indicating that most, if not all, d-glucose molecules in NA-stimulated cells transit the glycogen shunt during glycolysis. Moreover, under the defined transmembrane d-glucose gradient, the glycolytic intermediates were not only used to produce l-lactate, but also to significantly support oxidative phosphorylation, as demonstrated by an elevation in [lac]i when Krebs cycle was inhibited. We conclude that l-lactate production via aerobic glycolysis is an essential energy pathway in NA-stimulated astrocytes; however, oxidative metabolism is important at rest.


Assuntos
Astrócitos/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Ácido Láctico/biossíntese , Norepinefrina/farmacologia , Animais , Animais Recém-Nascidos , Arabinose/farmacologia , Encéfalo/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Desoxiglucose/farmacologia , Metabolismo Energético , Transferência Ressonante de Energia de Fluorescência , Imino Furanoses/farmacologia , Nitrocompostos/farmacologia , Fosforilação Oxidativa , Cultura Primária de Células , Propionatos/farmacologia , Ratos , Ratos Wistar , Álcoois Açúcares/farmacologia , Transfecção
6.
Adv Exp Med Biol ; 1175: 93-115, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31583585

RESUMO

Astrocytes are secretory cells, actively participating in cell-to-cell communication in the central nervous system (CNS). They sense signaling molecules in the extracellular space, around the nearby synapses and also those released at much farther locations in the CNS, by their cell surface receptors, get excited to then release their own signaling molecules. This contributes to the brain information processing, based on diffusion within the extracellular space around the synapses and on convection when locales relatively far away from the release sites are involved. These functions resemble secretion from endocrine cells, therefore astrocytes were termed to be a part of the gliocrine system in 2015. An important mechanism, by which astrocytes release signaling molecules is the merger of the vesicle membrane with the plasmalemma, i.e., exocytosis. Signaling molecules stored in astroglial secretory vesicles can be discharged into the extracellular space after the vesicle membrane fuses with the plasma membrane. This leads to a fusion pore formation, a channel that must widen to allow the exit of the Vesiclal cargo. Upon complete vesicle membrane fusion, this process also integrates other proteins, such as receptors, transporters and channels into the plasma membrane, determining astroglial surface signaling landscape. Vesiclal cargo, together with the whole vesicle can also exit astrocytes by the fusion of multivesicular bodies with the plasma membrane (exosomes) or by budding of vesicles (ectosomes) from the plasma membrane into the extracellular space. These astroglia-derived extracellular vesicles can later interact with various target cells. Here, the characteristics of four types of astroglial secretory vesicles: synaptic-like microvesicles, dense-core vesicles, secretory lysosomes, and extracellular vesicles, are discussed. Then machinery for vesicle-based exocytosis, second messenger regulation and the kinetics of exocytotic vesicle content discharge or release of extracellular vesicles are considered. In comparison to rapidly responsive, electrically excitable neurons, the receptor-mediated cytosolic excitability-mediated astroglial exocytotic vesicle-based transmitter release is a relatively slow process.


Assuntos
Astrócitos/citologia , Sistema Nervoso Central/citologia , Exocitose , Vesículas Secretórias/fisiologia , Humanos , Fusão de Membrana
7.
Adv Exp Med Biol ; 1175: 45-91, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31583584

RESUMO

Astrocytes are principal cells responsible for maintaining the brain homeostasis. Additionally, these glial cells are also involved in homocellular (astrocyte-astrocyte) and heterocellular (astrocyte-other cell types) signalling and metabolism. These astroglial functions require an expression of the assortment of molecules, be that transporters or pumps, to maintain ion concentration gradients across the plasmalemma and the membrane of the endoplasmic reticulum. Astrocytes sense and balance their neurochemical environment via variety of transmitter receptors and transporters. As they are electrically non-excitable, astrocytes display intracellular calcium and sodium fluctuations, which are not only used for operative signalling but can also affect metabolism. In this chapter we discuss the molecules that achieve ionic gradients and underlie astrocyte signalling.


Assuntos
Astrócitos/fisiologia , Encéfalo/fisiologia , Transdução de Sinais , Cálcio , Homeostase , Humanos , Bombas de Íon/fisiologia , Neuroglia , Receptores de Neurotransmissores/fisiologia , Sódio
8.
Adv Exp Med Biol ; 1175: 149-179, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31583588

RESUMO

Astroglial cells are involved in most if not in all pathologies of the brain. These cells can change the morpho-functional properties in response to pathology or innate changes of these cells can lead to pathologies. Overall pathological changes in astroglia are complex and diverse and often vary with different disease stages. We classify astrogliopathologies into reactive astrogliosis, astrodegeneration with astroglial atrophy and loss of function, and pathological remodelling of astrocytes. Such changes can occur in neurological, neurodevelopmental, metabolic and psychiatric disorders as well as in infection and toxic insults. Mutation in astrocyte-specific genes leads to specific pathologies, such as Alexander disease, which is a leukodystrophy. We discuss changes in astroglia in the pathological context and identify some molecular entities underlying pathology. These entities within astroglia may repent targets for novel therapeutic intervention in the management of brain pathologies.


Assuntos
Astrócitos/patologia , Encéfalo/fisiopatologia , Doença de Alexander/fisiopatologia , Atrofia , Humanos , Transtornos Mentais/fisiopatologia
9.
Int J Mol Sci ; 20(4)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795555

RESUMO

As part of the blood-brain-barrier, astrocytes are ideally positioned between cerebral vasculature and neuronal synapses to mediate nutrient uptake from the systemic circulation. In addition, astrocytes have a robust enzymatic capacity of glycolysis, glycogenesis and lipid metabolism, managing nutrient support in the brain parenchyma for neuronal consumption. Here, we review the plasticity of astrocyte energy metabolism under physiologic and pathologic conditions, highlighting age-dependent brain dysfunctions. In astrocytes, glycolysis and glycogenesis are regulated by noradrenaline and insulin, respectively, while mitochondrial ATP production and fatty acid oxidation are influenced by the thyroid hormone. These regulations are essential for maintaining normal brain activities, and impairments of these processes may lead to neurodegeneration and cognitive decline. Metabolic plasticity is also associated with (re)activation of astrocytes, a process associated with pathologic events. It is likely that the recently described neurodegenerative and neuroprotective subpopulations of reactive astrocytes metabolize distinct energy substrates, and that this preference is supposed to explain some of their impacts on pathologic processes. Importantly, physiologic and pathologic properties of astrocytic metabolic plasticity bear translational potential in defining new potential diagnostic biomarkers and novel therapeutic targets to mitigate neurodegeneration and age-related brain dysfunctions.


Assuntos
Adaptação Fisiológica , Envelhecimento/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Metabolismo Energético , Animais , Encéfalo/crescimento & desenvolvimento , Humanos
10.
Cell Mol Life Sci ; 73(19): 3719-31, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27056575

RESUMO

Key support for vesicle-based release of gliotransmitters comes from studies of transgenic mice with astrocyte-specific expression of a dominant-negative domain of synaptobrevin 2 protein (dnSNARE). To determine how this peptide affects exocytosis, we used super-resolution stimulated emission depletion microscopy and structured illumination microscopy to study the anatomy of single vesicles in astrocytes. Smaller vesicles contained amino acid and peptidergic transmitters and larger vesicles contained ATP. Discrete increases in membrane capacitance, indicating single-vesicle fusion, revealed that astrocyte stimulation increases the frequency of predominantly transient fusion events in smaller vesicles, whereas larger vesicles transitioned to full fusion. To determine whether this reflects a lower density of SNARE proteins in larger vesicles, we treated astrocytes with botulinum neurotoxins D and E, which reduced exocytotic events of both vesicle types. dnSNARE peptide stabilized the fusion-pore diameter to narrow, release-unproductive diameters in both vesicle types, regardless of vesicle diameter.


Assuntos
Fusão de Membrana , Peptídeos/metabolismo , Proteínas SNARE/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Exocitose/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Feminino , Fusão de Membrana/efeitos dos fármacos , Microscopia , Modelos Biológicos , Ratos Wistar , Fatores de Tempo
11.
Int J Mol Sci ; 18(2)2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28208745

RESUMO

Although the central nervous system (CNS) consists of highly heterogeneous populations of neurones and glial cells, clustered into diverse anatomical regions with specific functions, there are some conditions, including alertness, awareness and attention that require simultaneous, coordinated and spatially homogeneous activity within a large area of the brain. During such events, the brain, representing only about two percent of body mass, but consuming one fifth of body glucose at rest, needs additional energy to be produced. How simultaneous energy procurement in a relatively extended area of the brain takes place is poorly understood. This mechanism is likely to be impaired in neurodegeneration, for example in Alzheimer's disease, the hallmark of which is brain hypometabolism. Astrocytes, the main neural cell type producing and storing glycogen, a form of energy in the brain, also hold the key to metabolic and homeostatic support in the central nervous system and are impaired in neurodegeneration, contributing to the slow decline of excitation-energy coupling in the brain. Many mechanisms are affected, including cell-to-cell signalling. An important question is how changes in cellular signalling, a process taking place in a rather short time domain, contribute to the neurodegeneration that develops over decades. In this review we focus initially on the slow dynamics of Alzheimer's disease, and on the activity of locus coeruleus, a brainstem nucleus involved in arousal. Subsequently, we overview much faster processes of vesicle traffic and cytosolic calcium dynamics, both of which shape the signalling landscape of astrocyte-neurone communication in health and neurodegeneration.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Homeostase , Doenças Neurodegenerativas/metabolismo , Vesículas Transportadoras/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Astrócitos/patologia , Atrofia , Comunicação Celular , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Humanos , Locus Cerúleo/metabolismo , Locus Cerúleo/patologia , Neocórtex/metabolismo , Neocórtex/patologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Plasticidade Neuronal , Neurônios/metabolismo , Transdução de Sinais
12.
J Biol Chem ; 290(17): 11167-76, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25792745

RESUMO

Astrocytes contain glycogen, an energy buffer, which can bridge local short term energy requirements in the brain. Glycogen levels reflect a dynamic equilibrium between glycogen synthesis and glycogenolysis. Many factors that include hormones and neuropeptides, such as insulin and insulin-like growth factor 1 (IGF-1) likely modulate glycogen stores in astrocytes, but detailed mechanisms at the cellular level are sparse. We used a glucose nanosensor based on Förster resonance energy transfer to monitor cytosolic glucose concentration with high temporal resolution and a cytochemical approach to determine glycogen stores in single cells. The results show that after glucose depletion, glycogen stores are replenished. Insulin and IGF-1 boost the process of glycogen formation. Although astrocytes appear to express glucose transporter GLUT4, glucose entry across the astrocyte plasma membrane is not affected by insulin. Stimulation of cells with insulin and IGF-1 decreased cytosolic glucose concentration, likely because of elevated glucose utilization for glycogen synthesis.


Assuntos
Astrócitos/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Hipoglicemiantes/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Insulina/farmacologia , Animais , Astrócitos/citologia , Transporte Biológico Ativo/efeitos dos fármacos , Transporte Biológico Ativo/fisiologia , Membrana Celular/metabolismo , Células Cultivadas , Transferência Ressonante de Energia de Fluorescência , Transportador de Glucose Tipo 4/metabolismo , Hipoglicemiantes/metabolismo , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Ratos
13.
Glia ; 64(5): 655-67, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26358496

RESUMO

Astrocytes play an important housekeeping role in the central nervous system. Additionally, as secretory cells, they actively participate in cell-to-cell communication, which can be mediated by membrane-bound vesicles. The gliosignaling molecules stored in these vesicles are discharged into the extracellular space after the vesicle membrane fuses with the plasma membrane. This process is termed exocytosis, regulated by SNARE proteins, and triggered by elevations in cytosolic calcium levels, which are necessary and sufficient for exocytosis in astrocytes. For astrocytic exocytosis, calcium is sourced from the intracellular endoplasmic reticulum store, although its entry from the extracellular space contributes to cytosolic calcium dynamics in astrocytes. Here, we discuss calcium management in astrocytic exocytosis and the properties of the membrane-bound vesicles that store gliosignaling molecules, including the vesicle fusion machinery and kinetics of vesicle content discharge. In astrocytes, the delay between the increase in cytosolic calcium activity and the discharge of secretions from the vesicular lumen is orders of magnitude longer than that in neurons. This relatively loose excitation-secretion coupling is likely tailored to the participation of astrocytes in modulating neural network processing.


Assuntos
Astrócitos/fisiologia , Comunicação Celular/fisiologia , Membrana Celular/fisiologia , Exocitose/fisiologia , Animais , Astrócitos/citologia , Cálcio/metabolismo , Humanos , Proteínas SNARE/metabolismo
14.
Glia ; 64(6): 1034-49, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27018061

RESUMO

Edema in the central nervous system can rapidly result in life-threatening complications. Vasogenic edema is clinically manageable, but there is no established medical treatment for cytotoxic edema, which affects astrocytes and is a primary trigger of acute post-traumatic neuronal death. To test the hypothesis that adrenergic receptor agonists, including the stress stimulus epinephrine protects neural parenchyma from damage, we characterized its effects on hypotonicity-induced cellular edema in cortical astrocytes by in vivo and in vitro imaging. After epinephrine administration, hypotonicity-induced swelling of astrocytes was markedly reduced and cytosolic 3'-5'-cyclic adenosine monophosphate (cAMP) was increased, as shown by a fluorescence resonance energy transfer nanosensor. Although, the kinetics of epinephrine-induced cAMP signaling was slowed in primary cortical astrocytes exposed to hypotonicity, the swelling reduction by epinephrine was associated with an attenuated hypotonicity-induced cytosolic Ca(2+) excitability, which may be the key to prevent astrocyte swelling. Furthermore, in a rat model of spinal cord injury, epinephrine applied locally markedly reduced neural edema around the contusion epicenter. These findings reveal new targets for the treatment of cellular edema in the central nervous system.


Assuntos
Astrócitos/efeitos dos fármacos , Edema Encefálico/etiologia , Lesões Encefálicas/tratamento farmacológico , Traumatismos da Medula Espinal/tratamento farmacológico , Adrenérgicos/farmacologia , Animais , Astrócitos/citologia , Lesões Encefálicas/complicações , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Ratos
15.
J Neurochem ; 137(6): 880-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26841731

RESUMO

Regulated exocytosis is a multistage process involving a merger between the vesicle and the plasma membrane, leading to the formation of a fusion pore, a channel, through which secretions are released from the vesicle to the cell exterior. A stimulus may influence the pore by either dilating it completely (full-fusion exocytosis) or mediating a reversible closure (transient exocytosis). In neurons, these transitions are short-lived and not accessible for experimentation. However, in some neuroendocrine cells and astrocytes, initial fusion pores may reopen several hundred times, indicating their stability. Frequently, these pores are too narrow to pass luminal molecules to the extracellular space (unproductive exocytosis), but their diameter can dilate upon stimulation. To explain the stability of the initial narrow fusion pores, anisotropic membrane constituents with a non-axisymmetric shape were proposed to accumulate in the fusion pore membrane. Although the nature of these is unclear, they may consist of lipids and proteins, including SNAREs, which may facilitate and regulate the pre- and post-fusional stages of exocytosis. This review highlights models and experimental studies revealing mechanisms of fusion pore stabilization in a narrow, release unproductive state. The fusion pore is a channel that forms when the vesicle and the plasma membranes merge, and mediates the release of secretions from the vesicle lumen to the cell exterior. Frequently, these pores are too narrow to pass molecules to the extracellular space. Anisotropic membrane constituents with a non-axisymmetric shape were proposed to accumulate in the fusion pore membrane. This article is part of a mini review series on Chromaffin cells (ISCCB Meeting, 2015).


Assuntos
Exocitose/fisiologia , Fusão de Membrana/fisiologia , Vesículas Secretórias/fisiologia , Animais , Cálcio/metabolismo , Membrana Celular/metabolismo , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia
16.
J Neurochem ; 139(2): 309-323, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27488079

RESUMO

Astrocytes, the most heterogeneous glial cells in the central nervous system, contribute to brain homeostasis, by regulating a myriad of functions, including the clearance of extracellular debris. When cells are damaged, cytoplasmic proteins may exit into the extracellular space. One such protein is S100B, which may exert toxic effects on neighboring cells unless it is removed from the extracellular space, but the mechanisms of this clearance are poorly understood. By using time-lapse confocal microscopy and fluorescently labeled S100B (S100B-Alexa488 ) and fluorescent dextran (Dextran546 ), a fluid phase uptake marker, we examined the uptake of fluorescently labeled S100B-Alexa488 from extracellular space and monitored trafficking of vesicles that internalized S100B-Alexa488 . Initially, S100B-Alexa488 and Dextran546 internalized with distinct rates into different endocytotic vesicles; S100B-Alexa488 internalized into smaller vesicles than Dextran546 . At a later stage, S100B-Alexa488 -positive vesicles substantially co-localized with Dextran546 -positive endolysosomes and with acidic LysoTracker-positive vesicles. Cell treatment with anti-receptor for advanced glycation end products (RAGE) antibody, which binds to RAGE, a 'scavenger receptor', partially inhibited uptake of S100B-Alexa488 , but not of Dextran546 . The dynamin inhibitor dynole 34-2 inhibited internalization of both fluorescent probes. Directional mobility of S100B-Alexa488 -positive vesicles increased over time and was inhibited by ATP stimulation, an agent that increases cytosolic free calcium concentration ([Ca2+ ]i ). We conclude that astrocytes exhibit RAGE- and dynamin-dependent vesicular mechanism to efficiently remove S100B from the extracellular space. If a similar process occurs in vivo, astroglia may mitigate the toxic effects of extracellular S100B by this process under pathophysiologic conditions. This study reveals the vesicular clearance mechanism of extracellular S100B in astrocytes. Initially, fluorescent S100B internalizes into smaller endocytotic vesicles than dextran molecules. At a later stage, both probes co-localize within endolysosomes. S100B internalization is both dynamin- and RAGE-dependent, whereas dextran internalization is dependent on dynamin. Vesicle internalization likely mitigates the toxic effects of extracellular S100B and other waste products.


Assuntos
Astrócitos/metabolismo , Vesículas Citoplasmáticas/metabolismo , Espaço Extracelular/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Anticorpos Bloqueadores/farmacologia , Cálcio/metabolismo , Células Cultivadas , Cianoacrilatos/farmacologia , Vesículas Citoplasmáticas/ultraestrutura , Dinaminas/antagonistas & inibidores , Endocitose , Feminino , Indóis/farmacologia , Lisossomos/metabolismo , Ratos , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Receptor para Produtos Finais de Glicação Avançada/imunologia
17.
J Neurosci ; 34(47): 15638-47, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25411492

RESUMO

Hormone and neurotransmitter release from vesicles is mediated by regulated exocytosis, where an aqueous channel-like structure, termed a fusion pore, is formed. It was recently shown that second messenger cAMP modulates the fusion pore, but the detailed mechanisms remain elusive. In this study, we asked whether the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are activated by cAMP, are involved in the regulation of unitary exocytic events. By using the Western blot technique, a real-time PCR, immunocytochemistry in combination with confocal microscopy, and voltage-clamp measurements of hyperpolarizing currents, we show that HCN channels are present in the plasma membrane and in the membrane of secretory vesicles of isolated rat lactotrophs. Single vesicle membrane capacitance measurements of lactotrophs, where HCN channels were either augmented by transfection or blocked with an HCN channel blocker (ZD7288), show modulated fusion pore properties. We suggest that the changes in local cation concentration, mediated through HCN channels, which are located on or near secretory vesicles, have an important role in modulating exocytosis.


Assuntos
AMP Cíclico/fisiologia , Exocitose/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/efeitos dos fármacos , Lactotrofos/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Células Cultivadas , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/antagonistas & inibidores , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Masculino , Técnicas de Patch-Clamp , Canais de Potássio/genética , Canais de Potássio/fisiologia , Ratos , Ratos Wistar
18.
Neurochem Res ; 40(12): 2414-24, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25732760

RESUMO

During neural activity, neurotransmitters released at synapses reach neighbouring cells, such as astrocytes. These get excited via numerous mechanisms, including the G protein coupled receptors that regulate the cytosolic concentration of second messengers, such as Ca(2+) and cAMP. The stimulation of these pathways leads to feedback modulation of neuronal activity and the activity of other cells by the release of diverse substances, gliosignals that include classical neurotransmitters such as glutamate, ATP, or neuropeptides. Gliosignal molecules are released from astrocytes through several distinct molecular mechanisms, for example, by diffusion through membrane channels, by translocation via plasmalemmal transporters, or by vesicular exocytosis. Vesicular release regulated by a stimulus-mediated increase in cytosolic second messengers involves a SNARE-dependent merger of the vesicle membrane with the plasmalemma. The coupling between the stimulus and vesicular secretion of gliosignals in astrocytes is not as tight as in neurones. This is considered an adaptation to regulate homeostatic processes in a slow time domain as is the case in the endocrine system (slower than the nervous system), hence glial functions constitute the gliocrine system. This article provides an overview of the mechanisms of excitability, involving Ca(2+) and cAMP, where the former mediates phasic signalling and the latter tonic signalling. The molecular, anatomic, and physiologic properties of the vesicular apparatus mediating the release of gliosignals is presented.


Assuntos
Astrócitos/fisiologia , Sinalização do Cálcio/fisiologia , AMP Cíclico/fisiologia , Exocitose/fisiologia , Animais , Citosol/metabolismo , Humanos , Neuroglia/fisiologia
19.
Glia ; 62(4): 566-79, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24464905

RESUMO

The morphology of astrocytes, likely regulated by cAMP, determines the structural association between astrocytes and the synapse, consequently modulating synaptic function. ß-Adrenergic receptors (ß-AR), which increase cytosolic cAMP concentration ([cAMP]i ), may affect cell morphology. However, the real-time dynamics of ß-AR-mediated cAMP signaling in single live astrocytes and its effect on cell morphology have not been studied. We used the fluorescence resonance energy transfer (FRET)-based cAMP biosensor Epac1-camps to study time-dependent changes in [cAMP]i ; morphological changes in primary rat astrocytes were monitored by real-time confocal microscopy. Stimulation of ß-AR by adrenaline, noradrenaline, and isoprenaline, a specific agonist of ß-AR, rapidly increased [cAMP]i (∼15 s). The FRET signal response, mediated via ß-AR, was faster than in the presence of forskolin (twofold) and dibutyryl-cAMP (>35-fold), which directly activate adenylyl cyclase and Epac1-camps, respectively, likely due to slow entry of these agents into the cytosol. Oscillations in [cAMP]i have not been recorded, indicating that cAMP-dependent processes operate in a slow time domain. Most Epac1-camps expressing astrocytes revealed a morphological change upon ß-AR activation and attained a stellate morphology within 1 h. The morphological changes exhibited a bell-shaped dependency on [cAMP]i . The 5-10% decrease in cell cross-sectional area and the 30-50% increase in cell perimeter are likely due to withdrawal of the cytoplasm to the perinuclear region and the appearance of protrusions on the surface of astrocytes. Because astrocyte processes ensheath neurons, ß-AR/cAMP-mediated morphological changes can modify the geometry of the extracellular space, affecting synaptic, neuronal, and astrocyte functions in health and disease.


Assuntos
Astrócitos/citologia , Astrócitos/metabolismo , AMP Cíclico/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais/fisiologia , 1-Metil-3-Isobutilxantina/farmacologia , Adrenérgicos/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/citologia , Colforsina/farmacologia , Relação Dose-Resposta a Droga , Citometria de Fluxo , Proteína Glial Fibrilar Ácida/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
20.
Br J Pharmacol ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825750

RESUMO

G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that play a critical role in nervous system function by transmitting signals between cells and their environment. They are involved in many, if not all, nervous system processes, and their dysfunction has been linked to various neurological disorders representing important drug targets. This overview emphasises the GPCRs of the nervous system, which are the research focus of the members of ERNEST COST action (CA18133) working group 'Biological roles of signal transduction'. First, the (patho)physiological role of the nervous system GPCRs in the modulation of synapse function is discussed. We then debate the (patho)physiology and pharmacology of opioid, acetylcholine, chemokine, melatonin and adhesion GPCRs in the nervous system. Finally, we address the orphan GPCRs, their implication in the nervous system function and disease, and the challenges that need to be addressed to deorphanize them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA