Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
1.
Eur Heart J ; 45(14): 1224-1240, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38441940

RESUMO

Heart failure (HF) patients have a significantly higher risk of new-onset cancer and cancer-associated mortality, compared to subjects free of HF. While both the prevention and treatment of new-onset HF in patients with cancer have been investigated extensively, less is known about the prevention and treatment of new-onset cancer in patients with HF, and whether and how guideline-directed medical therapy (GDMT) for HF should be modified when cancer is diagnosed in HF patients. The purpose of this review is to elaborate and discuss the effects of pillar HF pharmacotherapies, as well as digoxin and diuretics on cancer, and to identify areas for further research and novel therapeutic strategies. To this end, in this review, (i) proposed effects and mechanisms of action of guideline-directed HF drugs on cancer derived from pre-clinical data will be described, (ii) the evidence from both observational studies and randomized controlled trials on the effects of guideline-directed medical therapy on cancer incidence and cancer-related outcomes, as synthetized by meta-analyses will be reviewed, and (iii) considerations for future pre-clinical and clinical investigations will be provided.


Assuntos
Insuficiência Cardíaca , Neoplasias , Humanos , Insuficiência Cardíaca/tratamento farmacológico , Neoplasias/epidemiologia
2.
J Lipid Res ; 65(8): 100596, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39019344

RESUMO

Membrane lipids extensively modulate the activation gating of voltage-gated potassium channels (KV), however, much less is known about the mechanisms of ceramide and glucosylceramide actions including which structural element is the main intramolecular target and whether there is any contribution of indirect, membrane biophysics-related mechanisms to their actions. We used two-electrode voltage-clamp fluorometry capable of recording currents and fluorescence signals to simultaneously monitor movements of the pore domain (PD) and the voltage sensor domain (VSD) of the KV1.3 ion channel after attaching an MTS-TAMRA fluorophore to a cysteine introduced into the extracellular S3-S4 loop of the VSD. We observed rightward shifts in the conductance-voltage (G-V) relationship, slower current activation kinetics, and reduced current amplitudes in response to loading the membrane with C16-ceramide (Cer) or C16-glucosylceramide (GlcCer). When analyzing VSD movements, only Cer induced a rightward shift in the fluorescence signal-voltage (F-V) relationship and slowed fluorescence activation kinetics, whereas GlcCer exerted no such effects. These results point at a distinctive mechanism of action with Cer primarily targeting the VSD, while GlcCer only the PD of KV1.3. Using environment-sensitive probes and fluorescence-based approaches, we show that Cer and GlcCer similarly increase molecular order in the inner, hydrophobic regions of bilayers, however, Cer induces a robust molecular reorganization at the membrane-water interface. We propose that this unique ordering effect in the outermost membrane layer in which the main VSD rearrangement involving an outward sliding of the top of S4 occurs can explain the VSD targeting mechanism of Cer, which is unavailable for GlcCer.


Assuntos
Ceramidas , Ativação do Canal Iônico , Canal de Potássio Kv1.3 , Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.3/química , Ceramidas/metabolismo , Ceramidas/química , Humanos , Animais , Cinética
3.
Am J Physiol Renal Physiol ; 327(2): F314-F326, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38932694

RESUMO

Perinatal asphyxia (PA) poses a significant threat to multiple organs, particularly the kidneys. Diagnosing PA-associated kidney injury remains challenging, and treatment options are inadequate. Furthermore, there is a lack of long-term follow-up data regarding the renal implications of PA. In this study, 7-day-old male Wistar rats were exposed to PA using a gas mixture (4% O2; 20% CO2 in N2 for 15 min) to investigate molecular pathways linked to renal tubular damage, hypoxia, angiogenesis, heat shock response, inflammation, and fibrosis in the kidney. In a second experiment, adult rats with a history of PA were subjected to moderate renal ischemia-reperfusion (IR) injury to test the hypothesis that PA exacerbates renal susceptibility. Our results revealed an increased gene expression of renal injury markers (kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin), hypoxic and heat shock factors (hypoxia-inducible factor-1α, heat shock factor-1, and heat shock protein-27), proinflammatory cytokines (interleukin-1ß, interleukin-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1), and fibrotic markers (transforming growth factor-ß, connective tissue growth factor, and fibronectin) promptly after PA. Moreover, a machine learning model was identified through random forest analysis, demonstrating an impressive classification accuracy (95.5%) for PA. Post-PA rats showed exacerbated functional decline and tubular injury and more intense hypoxic, heat shock, proinflammatory, and profibrotic response after renal IR injury compared with controls. In conclusion, PA leads to subclinical kidney injury, which may increase the susceptibility to subsequent renal damage later in life. In addition, the parameters identified through random forest analysis provide a robust foundation for future biomarker research in the context of PA.NEW & NOTEWORTHY This article demonstrates that perinatal asphyxia leads to subclinical kidney injury that permanently increases renal susceptibility to subsequent ischemic injury. We identified major molecular pathways involved in perinatal asphyxia-induced renal complications, highlighting potential targets of therapeutic approaches. In addition, random forest analysis revealed a model that classifies perinatal asphyxia with 95.5% accuracy that may provide a strong foundation for further biomarker research. These findings underscore the importance of multiorgan follow-up for perinatal asphyxia-affected patients.


Assuntos
Injúria Renal Aguda , Modelos Animais de Doenças , Rim , Ratos Wistar , Traumatismo por Reperfusão , Animais , Masculino , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/etiologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Rim/patologia , Rim/metabolismo , Fibrose , Asfixia Neonatal/metabolismo , Asfixia Neonatal/complicações , Asfixia Neonatal/patologia , Animais Recém-Nascidos , Ratos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Citocinas/metabolismo , Fatores Etários , Mediadores da Inflamação/metabolismo
4.
Anal Chem ; 96(32): 12966-12972, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38684213

RESUMO

A methodology based on the use of asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS with size fraction-targeted isotope dilution analysis (IDA) has been developed, validated, and applied for the first time to determine the mass fraction of nanoscale silica (SiO2). For this purpose, 29Si-enriched SiO2 nanoparticles, to be used as an IDA spike/internal standard, were synthesized and characterized in-house. Double IDA was used to quantify an aqueous suspension of Stöber silica particles of similar characteristics to those of the 29SiO2 nanoparticle (NP) spike using a representative test material of natural Si isotopic composition as the calibrant. For fumed SiO2 NP in a highly complex food matrix, a methodology based on single IDA with AF4/ICP-MS using the same 29SiO2 NP spike was developed and validated. Relative expanded measurement uncertainties (k = 2) of 4% (double IDA) and 8% (single IDA) were achieved for nanoscale silica mass fractions of 5143 and 107 mg kg-1 in water suspension and food matrix, respectively. To assess the accuracy of AF4/ICP-IDMS for the characterization of SiO2 NP in a food matrix, standard addition measurements on samples spiked with Aerosil AF200, also in-house characterized for Si mass fraction, were undertaken, with an average recovery of 95.6 ± 4.1% (RSD, n = 3) obtained. The particle-specific IDA data obtained for both SiO2 NP-containing samples were also compared with that of post-AF4 channel external calibration using inorganic Si standards. The mass fractions obtained by IDA agreed well with those obtained by external calibration within their associated measurement uncertainties.

5.
Basic Res Cardiol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39023770

RESUMO

Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy by unleashing the power of the immune system against malignant cells. However, their use is associated with a spectrum of adverse effects, including cardiovascular complications, which can pose significant clinical challenges. Several mechanisms contribute to cardiovascular toxicity associated with ICIs. First, the dysregulation of immune checkpoints, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein-1 (PD-1) and its ligand (PD-L1), and molecular mimicry with cardiac autoantigens, leads to immune-related adverse events, including myocarditis and vasculitis. These events result from the aberrant activation of T cells against self-antigens within the myocardium or vascular endothelium. Second, the disruption of immune homeostasis by ICIs can lead to autoimmune-mediated inflammation of cardiac tissues, manifesting as cardiac dysfunction and heart failure, arrhythmias, or pericarditis. Furthermore, the upregulation of inflammatory cytokines, particularly tumor necrosis factor-alpha, interferon-γ, interleukin-1ß, interleukin-6, and interleukin-17 contributes to cardiac and endothelial dysfunction, plaque destabilization, and thrombosis, exacerbating cardiovascular risk on the long term. Understanding the intricate mechanisms of cardiovascular side effects induced by ICIs is crucial for optimizing patient care and to ensure the safe and effective integration of immunotherapy into a broader range of cancer treatment protocols. The clinical implications of these mechanisms underscore the importance of vigilant monitoring and early detection of cardiovascular toxicity in patients receiving ICIs. Future use of these key pathological mediators as biomarkers may aid in prompt diagnosis of cardiotoxicity and will allow timely interventions.

6.
Basic Res Cardiol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935171

RESUMO

Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a new drug class initially designed and approved for treatment of diabetes mellitus, have been shown to exert pleiotropic metabolic and direct cardioprotective and nephroprotective effects that extend beyond their glucose-lowering action. These properties prompted their use in two frequently intertwined conditions, heart failure and chronic kidney disease. Their unique mechanism of action makes SGLT2i an attractive option also to lower the rate of cardiac events and improve overall survival of oncological patients with preexisting cardiovascular risk and/or candidate to receive cardiotoxic therapies. This review will cover biological foundations and clinical evidence for SGLT2i modulating myocardial function and metabolism, with a focus on their possible use as cardioprotective agents in the cardio-oncology settings. Furthermore, we will explore recently emerged SGLT2i effects on hematopoiesis and immune system, carrying the potential of attenuating tumor growth and chemotherapy-induced cytopenias.

7.
Cytometry A ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39238272

RESUMO

Imaging flow cytometry (IFCM) is a technique that can detect, size, and phenotype extracellular vesicles (EVs) at high throughput (thousands/minute) in complex biofluids without prior EV isolation. However, the generated signals are expressed in arbitrary units, which hinders data interpretation and comparison of measurement results between instruments and institutes. While fluorescence calibration can be readily achieved, calibration of side scatter (SSC) signals presents an ongoing challenge for IFCM. Here, we present an approach to relate the SSC signals to particle size for IFCM, and perform a comparability study between three different IFCMs using a plasma EV test sample (PEVTES). SSC signals for different sizes of polystyrene (PS) and hollow organosilica beads (HOBs) were acquired with a 405 nm 120 mW laser without a notch filter before detection. Mie theory was applied to relate scatter signals to particle size. Fluorescence calibration was accomplished with 2 µm phycoerythrin (PE) and allophycocyanin (APC) MESF beads. Size and fluorescence calibration was performed for three IFCMs in two laboratories. CD235a-PE and CD61-APC stained PEVTES were used as EV-containing samples. EV concentrations were compared between instruments within a size range of 100-1000 nm and a fluorescence intensity range of 3-10,000 MESF. 81 nm PS beads could be readily discerned from background based on their SSC signals. Fitting of the obtained PS bead SSC signals with Mie theory resulted in a coefficient of determination >0.99 between theory and data for all three IFCMs. 216 nm HOBs were detected with all instruments, and confirmed the sensitivity to detect EVs by SSC. The lower limit of detection regarding EV-size for this study was determined to be ~100 nm for all instruments. Size and fluorescence calibration of IFCM data increased cross-instrument data comparability with the coefficient of variation decreasing from 33% to 21%. Here we demonstrate - for the first time - scatter calibration of an IFCM using the 405 nm laser. The quality of the scatter-to-diameter relation and scatter sensitivity of the IFCMs are similar to the most sensitive commercially available flow cytometers. This development will support the reliability of EV research with IFCM by providing robust standardization and reproducibility, which are pre-requisites for understanding the biological significance of EVs.

8.
Cell Commun Signal ; 22(1): 282, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778340

RESUMO

Extracellular vesicles (EVs) constitute a vital component of intercellular communication, exerting significant influence on metastasis formation and drug resistance mechanisms. Malignant melanoma (MM) is one of the deadliest forms of skin cancers, because of its high metastatic potential and often acquired resistance to oncotherapies. The prevalence of BRAF mutations in MM underscores the importance of BRAF-targeted therapies, such as vemurafenib and dabrafenib, alone or in combination with the MEK inhibitor, trametinib. This study aimed to elucidate the involvement of EVs in MM progression and ascertain whether EV-mediated metastasis promotion persists during single agent BRAF (vemurafenib, dabrafenib), or MEK (trametinib) and combined BRAF/MEK (dabrafenib/trametinib) inhibition.Using five pairs of syngeneic melanoma cell lines, we assessed the impact of EVs - isolated from their respective supernatants - on melanoma cell proliferation and migration. Cell viability and spheroid growth assays were employed to evaluate proliferation, while migration was analyzed through mean squared displacement (MSD) and total traveled distance (TTD) measurements derived from video microscopy and single-cell tracking.Our results indicate that while EV treatments had remarkable promoting effect on cell migration, they exerted only a modest effect on cell proliferation and spheroid growth. Notably, EVs demonstrated the ability to mitigate the inhibitory effects of BRAF inhibitors, albeit they were ineffective against a MEK inhibitor and the combination of BRAF/MEK inhibitors. In summary, our findings contribute to the understanding of the intricate role played by EVs in tumor progression, metastasis, and drug resistance in MM.


Assuntos
Movimento Celular , Vesículas Extracelulares , Melanoma , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Melanoma/patologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Humanos , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Proliferação de Células/efeitos dos fármacos , Vemurafenib/farmacologia , Pirimidinonas/farmacologia , Piridonas/farmacologia , Piridonas/uso terapêutico , Imidazóis/farmacologia , Oximas/farmacologia
9.
Langmuir ; 40(24): 12353-12367, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38848254

RESUMO

Biodegradable nanoparticle-based emulsions exhibit immense potential in various applications, particularly in the pharmaceutical, cosmetic, and food industries. This study delves into the intricate interfacial behavior of Pluronic F127 modified poly(lactic-co-glycolic acid) (PLGA-F127) nanoparticles, a crucial determinant of their ability to stabilize Pickering emulsions. Employing a combination of Langmuir balance, surface tension, and diffusion coefficient measurements, we investigate the interfacial dynamics of PLGA-F127 nanoparticles under varying temperature and ionic strength conditions. Theoretical calculations are employed to elucidate the underlying mechanisms governing these phenomena. Our findings reveal a profound influence of temperature-dependent Pluronic layer behavior and electrostatic and steric interactions on the interfacial dynamics. Nonlinear changes in surface tension are observed, reflecting the interplay of these factors. Particle aggregation is found to be prevalent at elevated temperatures and ionic strengths, compromising the stability and emulsification efficiency of the formed emulsions. This work provides insights into the rational design of stable and efficient biodegradable nanoparticle-based Pickering emulsions, broadening their potential applications in various fields.

10.
J Chem Inf Model ; 64(12): 4850-4862, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38850237

RESUMO

The human voltage-gated proton channel, hHV1, is highly expressed in various cell types including macrophages, B lymphocytes, microglia, sperm cells and also in various cancer cells. Overexpression of HV1 has been shown to promote tumor formation by highly metastatic cancer cells, and has been associated with neuroinflammatory diseases, immune response disorders and infertility, suggesting a potential use of hHV1 inhibitors in numerous therapeutic areas. To identify compounds targeting this channel, we performed a structure-based virtual screening on an open structure of the human HV1 channel. Twenty selected virtual screening hits were tested on Chinese hamster ovary (CHO) cells transiently expressing hHV1, with compound 13 showing strong block of the proton current with an IC50 value of 8.5 µM. Biological evaluation of twenty-three additional analogs of 13 led to the discovery of six other compounds that blocked the proton current by more than 50% at 50 µM concentration. This allowed for an investigation of structure-activity relationships. The antiproliferative activity of the selected promising hHV1 inhibitors was investigated in the cell lines MDA-MB-231 and THP-1, where compound 13 inhibited growth with an IC50 value of 9.0 and 8.1 µM, respectively. The identification of a new structural class of HV1 inhibitors contributes to our understanding of the structural requirements for inhibition of this ion channel and opens up the possibility of investigating the role of HV1 inhibitors in various pathological conditions and in cancer therapy.


Assuntos
Cricetulus , Canais Iônicos , Humanos , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/metabolismo , Células CHO , Animais , Relação Estrutura-Atividade , Avaliação Pré-Clínica de Medicamentos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Interface Usuário-Computador , Simulação de Acoplamento Molecular
11.
Nanotechnology ; 35(38)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38861978

RESUMO

Biomedical analytical applications, as well as the industrial production of high-quality nano- and sub-micrometre particles, require accurate methods to quantify the absolute number concentration of particles. In this context, small-angle x-ray scattering (SAXS) is a powerful tool to determine the particle size and concentration traceable to the Système international d'unités (SI). Therefore, absolute measurements of the scattering cross-section must be performed, which require precise knowledge of all experimental parameters, such as the electron density of solvent and particles, whereas the latter is often unknown. Within the present study, novel SAXS-based approaches to determine the size distribution, density and number concentrations of sub-micron spherical silica particles with narrow size distributions and mean diameters between 160 nm and 430 nm are presented. For the first-time traceable density and number concentration measurements of silica particles are presented and current challenges in SAXS measurements such as beam-smearing, poorly known electron densities and moderately polydisperse samples are addressed. In addition, and for comparison purpose, atomic force microscopy has been used for traceable measurements of the size distribution and single particle inductively coupled plasma mass spectrometry with the dynamic mass flow approach for the accurate quantification of the number concentrations of silica particles. The possibilities and limitations of the current approaches are critically discussed in this study.

12.
Acta Pharmacol Sin ; 45(2): 339-353, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37816857

RESUMO

Lysophosphatidic acid (LPA) is a bioactive phospholipid mediator that has been found to ameliorate nonsteroidal anti-inflammatory drug (NSAID)-induced gastric injury by acting on lysophosphatidic acid type 2 receptor (LPAR2). In this study, we investigated whether LPAR2 signaling was implicated in the development of NSAID-induced small intestinal injury (enteropathy), another major complication of NSAID use. Wild-type (WT) and Lpar2 deficient (Lpar2-/-) mice were treated with a single, large dose (20 or 30 mg/kg, i.g.) of indomethacin (IND). The mice were euthanized at 6 or 24 h after IND treatment. We showed that IND-induced mucosal enteropathy and neutrophil recruitment occurred much earlier (at 6 h after IND treatment) in Lpar2-/- mice compared to WT mice, but the tissue levels of inflammatory mediators (IL-1ß, TNF-α, inducible COX-2, CAMP) remained at much lower levels. Administration of a selective LPAR2 agonist DBIBB (1, 10 mg/kg, i.g., twice at 24 h and 30 min before IND treatment) dose-dependently reduced mucosal injury and neutrophil activation in enteropathy, but it also enhanced IND-induced elevation of several proinflammatory chemokines and cytokines. By assessing caspase-3 activation, we found significantly increased intestinal apoptosis in IND-treated Lpar2-/- mice, but it was attenuated after DBIBB administration, especially in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Finally, we showed that IND treatment reduced the plasma activity and expression of autotaxin (ATX), the main LPA-producing enzyme, and also reduced the intestinal expression of Lpar2 mRNA, which preceded the development of mucosal damage. We conclude that LPAR2 has a dual role in NSAID enteropathy, as it contributes to the maintenance of mucosal integrity after NSAID exposure, but also orchestrates the inflammatory responses associated with ulceration. Our study suggests that IND-induced inhibition of the ATX-LPAR2 axis is an early event in the pathogenesis of enteropathy.


Assuntos
Diabetes Mellitus Tipo 2 , Enteropatias , Lisofosfolipídeos , Camundongos , Animais , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Anti-Inflamatórios não Esteroides , Indometacina/efeitos adversos , Enteropatias/induzido quimicamente
13.
Cryobiology ; 116: 104909, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38763350

RESUMO

We studied the impact of modulating cholesterol levels in zebrafish sperm plasma membranes using cholesterol-loaded methyl-ß-cyclodextrin (CLC) and unloaded methyl-ß-cyclodextrin (MßC). Zebrafish sperm were treated with these substances before cryopreservation, and post-thaw sperm motility and in vitro fertilization (IVF) rates were compared between treated and untreated samples. Our findings indicate that adding cholesterol to sperm membranes increases post-thaw motility, motile cell count, and motile cell survival within a 0.5-4.0 mg per 1.2 × 108 cell concentration range. Conversely, depleting cholesterol using MßC at 1.0 and 2.0 mg per 1.2 × 108 cells reduced these parameters. On average, all CLC-treated sperm samples produced a 15 % higher IVF rate compared to untreated sperm. Including CLC in the extender before cryopreservation is beneficial for post-thaw sperm quantity and quality in zebrafish.


Assuntos
Sobrevivência Celular , Colesterol , Criopreservação , Crioprotetores , Preservação do Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Peixe-Zebra , beta-Ciclodextrinas , Animais , Masculino , Criopreservação/métodos , Criopreservação/veterinária , Motilidade dos Espermatozoides/efeitos dos fármacos , Colesterol/metabolismo , Espermatozoides/efeitos dos fármacos , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia , Crioprotetores/farmacologia , Preservação do Sêmen/métodos , Preservação do Sêmen/veterinária , Sobrevivência Celular/efeitos dos fármacos , Fertilização in vitro/veterinária , Fertilização in vitro/métodos , Membrana Celular/efeitos dos fármacos
14.
Molecules ; 29(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39275046

RESUMO

The 203Pb and 212Pb lead radioisotopes are attracting growing interest as they can aid in the development of personalized, targeted radionuclide treatment for advanced and currently untreatable cancers. In the present study, the bonding interactions of Pb2+ with twelve macrocyclic ligands, having an octa and nona coordination, were assessed using Density Functional Theory (DFT) calculations. The molecular structures in an aqueous solution were computed utilizing the polarized continuum model. The preference for the twisted square antiprismatic (TSAP) structure was confirmed for ten out of the eleven cyclen-based complexes. The characteristics of the bonding were assessed using a Natural Energy Decomposition Analysis (NEDA). The analysis revealed a strong electrostatic character of the bonding in the complexes, with minor variations in electrical terms. The charge transfer (CT) had a comparable energetic contribution only in the case of neutral ligands, while in general, it showed notable variations regarding the various donor groups. Our data confirmed the general superiority of the carboxylate O and aromatic N donors. The combination of the selected efficient pendant arms pointed out the superiority of the acetate pendant arms and the lack of significant cooperation between the different pendant arms in the probed ligands. Altogether, the combination led only to a marginal enhancement in the total CTs in the complexes.

15.
Artigo em Inglês | MEDLINE | ID: mdl-37818738

RESUMO

Paradise fish (Macropodus opercularis) is an air-breathing freshwater fish species with a signature labyrinth organ capable of extracting oxygen from the air that helps these fish to survive in hypoxic environments. The appearance of this evolutionary innovation in anabantoids resulted in a rewired circulatory system, but also in the emergence of species-specific behaviors, such as territorial display, courtship and parental care in the case of the paradise fish. Early zoologists were intrigued by the structure and function of the labyrinth apparatus and a series of detailed descriptive histological studies at the beginning of the 20th century revealed the ontogenesis and function of this specialized system. A few decades later, these fish became the subject of numerous ethological studies, and detailed ethograms of their behavior were constructed. These latter studies also demonstrated a strong genetic component underlying their behavior, but due to lack of adequate molecular tools, the fine genetic dissection of the behavior was not possible at the time. The technological breakthroughs that transformed developmental biology and behavioral genetics in the past decades, however, give us now a unique opportunity to revisit these old questions. Building on the classic descriptive studies, the new methodologies will allow us to follow the development of the labyrinth apparatus at a cellular resolution, reveal the genes involved in this process and also the genetic architecture behind the complex behaviors that we can observe in this species.

16.
Artigo em Inglês | MEDLINE | ID: mdl-37614078

RESUMO

Diet is an external factor that affects the physiological baseline of research animals. It can shape gut microbiome, which can impact the host. As a result, dietary variation can challenge experimental reproducibility and data integration across studies when not appropriately considered. To control for diet-induced variation, reference diets have been developed for common biomedical models. However, such reference diets have not yet been developed for nontraditional model organisms, such as Xiphophorus species. In this study, we compared two diets designed for zebrafish, a commercial zebrafish diet (Gemma and GEM), and a proposed zebrafish reference diet developed by the Watts laboratory at the University of Alabama at Birmingham (WAT) to the Xiphophorus Genetic Stock Center custom diet (CON) to evaluate the influence of diet on the Xiphophorus gut microbiome. Xiphophorus maculatus were fed the three diets from 2 to 6 months of age. Feces were collected and the gut microbiome was assessed using 16S rRNA sequencing every month. We observed substantial diet-driven variation in the gut microbiome. Our results indicate that diets developed specifically for zebrafish can affect the gut microbiome composition and may not be optimal for Xiphophorus.

17.
J Chem Inf Model ; 63(12): 3799-3813, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37278479

RESUMO

Computer-assisted study and design of non-natural peptidomimetics is increasingly important in the development of novel constructs with widespread applicability. Among these methods, molecular dynamics can accurately describe monomeric as well as oligomeric states of these compounds. We studied seven different sequences composed of cyclic and acyclic ß-amino acids, the closest homologues of natural peptides, and compared the performance on them of three force field families in which specific modifications were made to improve reproduction of ß-peptide structures. Altogether 17 systems were simulated, each for 500 ns, testing multiple starting conformations and in three cases also oligomer formation and stability from eight ß-peptide monomers. The results indicated that our recently developed CHARMM force field extension, based on torsional energy path matching of the ß-peptide backbone against quantum-chemical calculations, performs best overall, reproducing the experimental structures accurately in all monomeric simulations and correctly describing all the oligomeric examples. The Amber and GROMOS force fields could only treat some of the seven peptides (four in each case) without further parametrization. Amber was able to reproduce the experimental secondary structure of those ß-peptides which contained cyclic ß-amino acids, while the GROMOS force field had the lowest performance in this sense. From the latter two, Amber was able to hold together already formed associates in the prepared state but was not able to yield spontaneous oligomer formation in the simulations.


Assuntos
Âmbar , Simulação de Dinâmica Molecular , Humanos , Peptídeos/química , Estrutura Secundária de Proteína , Aminoácidos
18.
J Phys Chem A ; 127(24): 5287-5297, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37307218

RESUMO

Machine-learned representations of potential energy surfaces generated in the output layer of a feedforward neural network are becoming increasingly popular. One difficulty with neural network output is that it is often unreliable in regions where training data is missing or sparse. Human-designed potentials often build in proper extrapolation behavior by choice of functional form. Because machine learning is very efficient, it is desirable to learn how to add human intelligence to machine-learned potentials in a convenient way. One example is the well-understood feature of interaction potentials that they vanish when subsystems are too far separated to interact. In this article, we present a way to add a new kind of activation function to a neural network to enforce low-dimensional constraints. In particular, the activation function depends parametrically on all of the input variables. We illustrate the use of this step by showing how it can force an interaction potential to go to zero at large subsystem separations without either inputting a specific functional form for the potential or adding data to the training set in the asymptotic region of geometries where the subsystems are separated. In the process of illustrating this, we present an improved set of potential energy surfaces for the 14 lowest 3A' states of O3. The method is more general than this example, and it may be used to add other low-dimensional knowledge or lower-level knowledge to machine-learned potentials. In addition to the O3 example, we present a greater-generality method called parametrically managed diabatization by deep neural network (PM-DDNN) that is an improvement on our previously presented permutationally restrained diabatization by deep neural network (PR-DDNN).

19.
J Phys Chem A ; 127(45): 9635-9640, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37916790

RESUMO

Constructing analytic representations of global and semiglobal potential energy surfaces is difficult and can be laborious, and it is even harder when one needs coupled potential energy surfaces and their electronically nonadiabatic couplings. When accomplished, however, the resulting potential functions are a valuable resource. To facilitate the convenient use of potentials that have been developed, we provide a collection of existing surfaces in a library with consistent units and formats. A potential energy surface library of this type, namely PotLib, was built more than 20 years ago. However, that library only provided pristine Fortran subroutines for each potential energy surface, and therefore, it is not as user-friendly as would be desirable. Here, we report the creation of ChemPotPy, a CHEMical library of POTential energy surfaces in PYthon. ChemPotPy is a user-friendly library for analytic representation of single-state and multistate potential energy surfaces and couplings. A given entry in the library contains an analytic potential energy function or analytic functions for a set of coupled potential energy surfaces, and depending on the case, it may also include analytic or numerical gradients, nonadiabatic coupling vectors, and/or diabatic potential energy matrices and their gradients. Only three inputs, namely, the chemical formula of the system, the name of the potential energy surface or surface set, and the Cartesian geometry, are required. ChemPotPy uses the same units for input and output quantities of all surfaces and surface sets to facilitate general interfaces with the dynamics programs. The initial version of the library contains 338 entries, and we anticipate that more will be added in the future.

20.
Cryobiology ; 113: 104792, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944879

RESUMO

Aquatic biomedical model organisms play a substantial role in advancing our understanding of human health, however, comparably little work has been directed towards developing dependable, high-throughput storage programs for valuable genetic resources. The Zebrafish International Resource Center (ZIRC) has developed a standardized cryopreservation pathway and stored thousands of genetic lines in their repository for use by the biomedical research community. This has yet to be replicated in other facilities, and an overall repository-level pathway has never been analyzed for aquatic species. To encourage repository development for other biomedical models and to improve the ZIRC storage process and system, this study used discrete-event simulation modeling to systematically analyze the cryopreservation pathway for efficiency, and to identify improvements. The models reflected "real-world" working conditions and were used to simulate key outputs, such as production capacity over time (throughput) and steps in the process that limit production (bottlenecks). With these models, recommendations were identified to eliminate waiting times and increase efficiency. These included following proper husbandry protocols because male quality significantly affected production time, and the use of part-time operators to assist with steps that had longer Waiting Times (i.e., time samples spent in a queue) to increase production capacity. Simulation process modeling is a powerful tool that can improve the operations of existing repositories. It can also support repository development at other biomedical stock centers, and at other facilities devoted to aquatic species such as research, conservation, and aquaculture production hatcheries.


Assuntos
Criopreservação , Peixe-Zebra , Animais , Masculino , Humanos , Criopreservação/métodos , Peixe-Zebra/genética , Organismos Aquáticos , Aquicultura/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA