RESUMO
We present an approach to fabricate biological matrix composites made entirely from cultured plant cells. We utilize the cell's innate ability to synthesize nanofibrillar cell walls, which serve as the composite's fundamental building blocks. Following a controlled compression/dehydration process, the cells arrange into lamellar structures with hierarchical features. We demonstrate that the native cell wall nanofibrils tether adjacent cells together through fibrillar interlocking and intermolecular hydrogen bonding. These interactions facilitate intercellular adhesion and eliminate the need for other binders. Our fabrication process utilizes the entire plant cell, grown in an in vitro culture; requires no harsh chemical treatments or waste-generating extraction or selection processes; and leads to bulk biocomposites that can be produced in situ and biodegrade in soil. The final mechanical properties are comparable to commodity plastics and can be further modulated by introducing filler particles.
Assuntos
Plásticos Biodegradáveis , Células Vegetais , Plásticos Biodegradáveis/síntese química , Plásticos Biodegradáveis/química , Técnicas de Cultura de Células , Células CultivadasRESUMO
Various methods have been developed to perform atomistic-scale simulations for the cross-linking of polymers. Most of these methods involve connecting the reactive sites of the monomers, but these typically do not capture the entire reaction process from the reactants to final products through transition states. Experimental time scales for cross-linking reactions in polymers range from minutes to hours, which are time scales that are inaccessible to atomistic-scale simulations. Because simulating reactions on realistic time scales is computationally expensive, in this investigation, an accelerated simulation method was developed within the ReaxFF reactive force field framework. In this method, the reactants are tracked until they reach a nonreactive configuration that provides a good starting point for a reactive event. Subsequently, the reactants are provided with a sufficient amount of energy-equivalent or slightly larger than their lowest-energy reaction barrier-to overcome the barrier for the cross-linking process and form desired products. This allows simulation of cross-linking at realistic, low temperatures, which helps to mimic chemical reactions and avoids unwanted high-temperature side reactions and still allows us to reject high-barrier events. It should be noted that not all accelerated events are successful as high local strain can lead to reaction rejections. The validity of the ReaxFF force field was tested for three different types of transition state, possibly for polymerization of epoxides, and good agreement with quantum mechanical methods was observed. The accelerated method was further implemented to study the cross-linking of diglycidyl ether of bisphenol F (bis F) and diethyltoluenediamine (DETDA), and a reasonably high percentage (82%) of cross-linking was obtained. The simulated cross-linked polymer was then tested for density, glass transition temperature, and modulus and found to be in good agreement with experiments. Results indicate that this newly developed accelerated simulation method in ReaxFF can be a useful tool to perform atomistic-scale simulations on polymerization processes that have a relatively high reaction barrier at a realistic, low temperature.
RESUMO
This study demonstrates a new and sustainable methodology for recycling continuous carbon fibers from end-of-life thermoset composite parts using Joule heating. This process addresses the longstanding challenge of efficiently recovering carbon fibers from composite scrap and reusing them to make fresh composites. The conductive carbon fibers volumetrically heat up when an electric current is passed through them, which in turn rapidly heats up the surrounding matrix sufficiently to degrade it. Fibers can be easily separated from the degraded matrix after the direct current (DC) heating process. Fibers reclaimed using this method were characterized to determine their tensile properties and surface chemistry, and compared against both as-received fibers and fibers recycled using conventional oven pyrolysis. The DC- and oven-recycled fibers yielded similar elastic modulus when compared against as-received fibers; however, an around 10-15 % drop was observed in the tensile strength of fibers recycled using either method. Surface characterization showed that DC-recycled fibers and as-received fibers had similar types of functional groups. To demonstrate the reusability of recycled fibers, composites were fabricated by impregnation with epoxy resin and curing. The mechanical properties of these recycled carbon fiber composites (rCFRCs) were compared against conventional recycling methods, and similar modulus and tensile strength values were obtained. This study establishes DC heating as a scalable out-of-oven approach for recycling carbon fibers.
Assuntos
Calefação , Reciclagem , Fibra de Carbono , Resistência à Tração , PiróliseRESUMO
The refining process of petroleum crude oil generates asphaltenes, which poses complicated problems during the production of cleaner fuels. Following refining, asphaltenes are typically combusted for reuse as fuel or discarded into tailing ponds and landfills, leading to economic and environmental disruption. Here, we show that low-value asphaltenes can be converted into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG), via the flash joule heating (FJH) process. After successful conversion, we develop nanocomposites by dispersing AFG into a polymer effectively, which have superior mechanical, thermal, and corrosion-resistant properties compared to the bare polymer. In addition, the life cycle and technoeconomic analysis show that the FJH process leads to reduced environmental impact compared to the traditional processing of asphaltene and lower production cost compared to other FJH precursors. Thus, our work suggests an alternative pathway to the existing asphaltene processing that directs toward a higher value stream while sequestering downstream emissions from the processing.
RESUMO
Carbon nanomaterials have been shown to rapidly evolve heat in response to electromagnetic fields. Initial studies focused on the use of microwaves, but more recently, it was discovered that carbon nanomaterial systems heat in response to electric fields in the radio frequency range (RF, 1-200 MHz). This is an exciting development because this range of radio frequencies is safe and versatile compared to microwaves. Additional RF susceptor materials include other carbonaceous materials such as carbon black, graphite, graphene oxide, laser-induced graphene, and carbon fibers. Such conductive fillers can be dispersed in matrices such as polymer or ceramics; these composites heat rapidly when stimulated by electromagnetic waves. These findings are valuable for materials processing, where volumetric and/or targeted heating are needed, such as curing composites, bonding multi-material surfaces, additive manufacturing, chemical reactions, actuation, and medical ablation. By changing the loading of these conductive RF susceptors in the embedding medium, material properties can be customized to achieve different heating rates, with possible other benefits in thermo-mechanical properties. Compared to traditional heating and processing methods, RF heating provides faster heating rates with lower infrastructure requirements and better energy efficiency; non-contact RF applicators or capacitors can be used for out-of-oven processing, allowing for distributed manufacturing.
RESUMO
Here we report an unprecedented mechanical size effect at the nanoscale in polymer-derived ceramic (PDC) nanofibers. Silicon oxycarbide (SiOC) PDCs were fabricated as micro- and nanofibers without the aid of fillers. By decreasing the size of SiOC ceramic fibers from 1.1 µm to 630 nm (reduction of 74%), the strength of nanofibers nearly tripled, going from â¼1 GPa to â¼3.3 GPa. This increase in strength exceeds the predictions of the Griffith theorem, which relies on the length-scale dependence of energy release rate during crack propagation, suggesting a reduction in flaw size more than proportional to sample size. Given the crosslinked and amorphous nature of SiOC PDCs, flaws are likely microcracks and voids, which form during polymer degassing as it is pyrolyzed to PDC nanofibers. A reduction in sample size may favor degassing via diffusion, preceding bubble and void formation. We developed a new reactive force field (ReaxFF) with parameters for Si/O/C/H/N to study the mechanics of PDCs in extreme cases where no void is present. The models and experiments compare favorably in terms of the elastic modulus. The simulations suggest a strength of â¼8.5 GPa for a "flawless" structure, which is in line with extrapolated experimental results, with C-C breakage as the root cause of failure. This work clearly shows the benefits of utilizing nanoscale components as building blocks of superstrong PDC structures.