Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Plant Cell ; 34(12): 4760-4777, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36069647

RESUMO

Histone acetyltransferase (HAT)- and histone deacetylase (HDAC)-mediated histone acetylation and deacetylation regulate nucleosome dynamics and gene expression. HDACs are classified into different families, with HD-tuins or HDTs being specific to plants. HDTs show some sequence similarity to nucleoplasmins, the histone chaperones that aid in binding, storing, and loading H2A/H2B dimers to assemble nucleosomes. Here, we solved the crystal structure of the N-terminal domain (NTD) of all four HDTs (HDT1, HDT2, HDT3, and HDT4) from Arabidopsis (Arabidopsis thaliana). The NTDs form a nucleoplasmin fold, exist as pentamers in solution, and are resistant to protease treatment, high temperature, salt, and urea conditions. Structurally, HDTs do not form a decamer, unlike certain classical nucleoplasmins. The HDT-NTD requires an additional A2 acidic tract C-terminal to the nucleoplasmin domain for interaction with histone H3/H4 and H2A/H2B oligomers. We also report the in-solution structures of HDT2 pentamers in complex with histone oligomers. Our study provides a detailed structural and in vitro functional characterization of HDTs, revealing them to be nucleoplasmin family histone chaperones. The experimental confirmation that HDTs are nucleoplasmins may spark new interest in this enigmatic family of proteins.


Assuntos
Arabidopsis , Histonas , Nucleoplasminas/química , Nucleoplasminas/genética , Nucleoplasminas/metabolismo , Histonas/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Nucleossomos/metabolismo , Chaperonas de Histonas/genética , Arabidopsis/genética , Arabidopsis/metabolismo
2.
Fish Physiol Biochem ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647980

RESUMO

Kisspeptin (Kiss) and kisspeptin receptor (Kissr) system is a key regulator of GnRH expression in several vertebrates. The Indian catfish, Clarias magur, is popular in the Indian sub-continent, and a neo-type of the Asian catfish, C. batrachus. Catfish breeding is constrained as males do not release milt captivity with/without stimulation. Magur Kiss/Kissr system comprising of kiss1, kiss2, kissr1, and kissr2 genes was characterized for the first time. Full-length mRNA was sequenced using RACE PCR. Neighbor-joining tree of predicted proteins shows one clade of teleost orthologs. Magur whole genome (NCBI GenBank) has single copies of each gene, though yet unannotated/misannotated. Anomalies in the nomenclature of earlier sequences in GenBank were noted. Relative gene expression was profiled during various ontogenic stages, in six tissues including brain and gonads at maturity, and also in brains and gonads of premature and spent fish. Expression of gnrh1, gnrhr1, and gnrhr2 was estimated concomitantly. The kiss1 was the first to be twofold upregulated (P < 0.05) at 12 h post fertilization. Kiss/Kissr genes expressed primarily in the brain, ovary, and testis. Though kiss2 was 10 times higher than kiss1, only kiss1 showed significant modulation across stages and appears to be the active isotype that regulates GnRH in magur.

3.
J Biol Chem ; 297(1): 100911, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34175309

RESUMO

Eukaryotic proliferating cell nuclear antigen (PCNA) plays an essential role in orchestrating the assembly of the replisome complex, stimulating processive DNA synthesis, and recruiting other regulatory proteins during the DNA damage response. PCNA and its binding partner network are relatively conserved in eukaryotes, and it exhibits extraordinary structural similarity across species. However, despite this structural similarity, the PCNA of a given species is rarely functional in heterologous systems. In this report, we determined the X-ray crystal structure of Neurospora crassa PCNA (NcPCNA) and compared its structure-function relationship with other available PCNA studies to understand this cross-species incompatibility. We found two regions, the interdomain connecting loop (IDCL) and J loop structures, vary significantly among PCNAs. In particular, the J loop deviates in NcPCNA from that in Saccharomyces cerevisiae PCNA (ScPCNA) by 7 Å. Differences in the IDCL structures result in varied binding affinities of PCNAs for the subunit Pol32 of DNA polymerase delta and for T2-amino alcohol, a small-molecule inhibitor of human PCNA. To validate that these structural differences are accountable for functional incompatibility in S. cerevisiae, we generated NcPCNA mutants mimicking IDCL and J loop structures of ScPCNA. Our genetic analyses suggested that NcPCNA mutants are fully functional in S. cerevisiae. The susceptibility of the strains harboring ScPCNA mimics of NcPCNA to various genotoxic agents was similar to that in yeast cells expressing ScPCNA. Taken together, we conclude that in addition to the overall architecture of PCNA, structures of the IDCL and J loop of PCNA are critical determinants of interspecies functional compatibility.


Assuntos
Proteínas Fúngicas/química , Antígeno Nuclear de Célula em Proliferação/química , Homologia de Sequência de Aminoácidos , Sítios de Ligação , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Teste de Complementação Genética , Neurospora crassa , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Saccharomyces cerevisiae
4.
Antimicrob Agents Chemother ; 66(7): e0046322, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35766508

RESUMO

The increase in disease incidences and persistent Chikungunya virus (CHIKV)-induced arthritis have been a huge burden on public health globally. In the absence of specific antivirals or vaccines, it is essential to continue efforts to develop effective anti-CHIKV strategies. Our previous study showing the in vitro anti-CHIKV potential of a novel molecule 1-[(2-methylbenzimidazol-1-yl) methyl]-2-oxo-indolin-3-ylidene] amino] thiourea (MBZM-N-IBT) encouraged us to further validate its efficacy. Here, the effect of MBZM-N-IBT was evaluated in vitro in RAW 264.7 cells, in vivo in C57BL/6 mice, and ex vivo in human peripheral blood mononuclear cells (hPBMCs). The study demonstrated that CHIKV infection was efficiently abrogated in RAW 264.7 cells (IC50 = 22.34 µM) with significant inhibition in viral proteins. The inhibition was effective in the postentry step, and MBZM-N-IBT predominately interfered in the early stages of CHIKV life cycle. It was further supported when the protease activity of CHIKV-nsP2 was hindered by the compound. Moreover, it diminished the CHIKV-induced inflammatory responses in vitro through significant downregulation of all the major mitogen-activated protein kinases (MAPKs), NF-κB, cyclooxygenase (COX)-2, and cytokines. Furthermore, MBZM-N-IBT restricted CHIKV infection and inflammation in vivo, leading to reduced clinical scores and complete survival of C57BL/6 mice. Additionally, it has been noticed that the CHIKV infection was reduced remarkably in hPBMC-derived monocyte-macrophage populations ex vivo by the compound. In conclusion, it can be suggested that this novel compound MBZM-N-IBT has been demonstrated to be a potential anti-CHIKV molecule in vitro, in vivo, and ex vivo and fulfilled all the criteria to investigate further for successful treatment of CHIKV infection.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Benzimidazóis , Febre de Chikungunya/tratamento farmacológico , Humanos , Isatina/análogos & derivados , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Peptídeo Hidrolases/metabolismo , Replicação Viral
5.
Bioessays ; 42(9): e1900234, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32567715

RESUMO

Chromatin structure and dynamics regulate key cellular processes such as DNA replication, transcription, repair, remodeling, and gene expression, wherein different protein factors interact with the nucleosomes. In these events, DNA and RNA polymerases, chromatin remodeling enzymes and transcription factors interact with nucleosomes, either in a DNA-sequence-specific manner and/or by recognizing different structural features on the nucleosome. The molecular details of the recognition of a nucleosome by different viral proteins, remodeling enzymes, histone post-translational modifiers, and RNA polymerase II, have been explored in the recent past. The present review puts forth critical insights into the basic mechanisms of nucleosome recognition by the various protein factors and the role of distinct surface epitopes on a nucleosome. These determinants of the underlying specificity include features such as the acidic patch, arginine anchor, histone post-translational modifications, core DNA, DNA lesions, and linker DNA.


Assuntos
Montagem e Desmontagem da Cromatina , Nucleossomos , Cromatina , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo
6.
Nucleic Acids Res ; 48(3): 1531-1550, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31807785

RESUMO

FKBP53 is one of the seven multi-domain FK506-binding proteins present in Arabidopsis thaliana, and it is known to get targeted to the nucleus. It has a conserved PPIase domain at the C-terminus and a highly charged N-terminal stretch, which has been reported to bind to histone H3 and perform the function of a histone chaperone. To better understand the molecular details of this PPIase with histone chaperoning activity, we have solved the crystal structures of its terminal domains and functionally characterized them. The C-terminal domain showed strong PPIase activity, no role in histone chaperoning and revealed a monomeric five-beta palm-like fold that wrapped over a helix, typical of an FK506-binding domain. The N-terminal domain had a pentameric nucleoplasmin-fold; making this the first report of a plant nucleoplasmin structure. Further characterization revealed the N-terminal nucleoplasmin domain to interact with H2A/H2B and H3/H4 histone oligomers, individually, as well as simultaneously, suggesting two different binding sites for H2A/H2B and H3/H4. The pentameric domain assists nucleosome assembly and forms a discrete complex with pre-formed nucleosomes; wherein two pentamers bind to a nucleosome.


Assuntos
Proteínas de Arabidopsis/ultraestrutura , Histonas/genética , Chaperonas Moleculares/ultraestrutura , Nucleoplasminas/química , Proteínas de Ligação a Tacrolimo/ultraestrutura , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sítios de Ligação/genética , Montagem e Desmontagem da Cromatina/genética , Cristalografia por Raios X , Histonas/química , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Nucleoplasminas/genética , Nucleossomos/química , Nucleossomos/genética , Peptidilprolil Isomerase/genética , Ligação Proteica/genética , Domínios Proteicos/genética , Dobramento de Proteína , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/genética
7.
Molecules ; 24(12)2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31213016

RESUMO

Nucleosome Assembly Protein (NAP) is a highly conserved family of histone chaperones present in yeast, animals, and plants. Unlike other organisms, plants possess an additional class of proteins in its NAP family, known as the NAP1-related proteins or NRP. Arabidopsis thaliana possesses two NRP isoforms, namely AtNRP1 and AtNRP2, that share 87% sequence identity. Both AtNRP1 and AtNRP2 get expressed in all the plant tissues. Most works in the past, including structural studies, have focused on AtNRP1. We wanted to do a comparative study of the two proteins to find why the plant would have two very similar proteins and whether there is any difference between the two for their structure and function as histone chaperones. Here we report the crystal structure of AtNRP2 and a comparative analysis of its structural architecture with other NAP family proteins. The crystal structure of AtNRP2 shows it to be a homodimer, with its fold similar to that of other structurally characterized NAP family proteins. Although AtNRP1 and AtNRP2 have a similar fold, upon structural superposition, we find an offset in the dimerization helix of the two proteins. We evaluated the stability, oligomerization status, and histone chaperoning properties of the two proteins, for a comparison. The thermal melting experiments suggest that AtNRP2 is more stable than AtNRP1 at higher temperatures. In addition, electrophoretic mobility shift assay and isothermal titration calorimetry experiments suggest histone binding ability of AtNRP2 is higher than that of AtNRP1. Overall, these results provide insights about the specific function and relevance of AtNRP2 in plants through structural and biophysical studies.


Assuntos
Proteínas de Arabidopsis/química , Modelos Moleculares , Chaperonas Moleculares/química , Conformação Proteica , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Chaperonas de Histonas/química , Chaperonas de Histonas/metabolismo , Chaperonas Moleculares/genética , Família Multigênica , Filogenia , Ligação Proteica , Multimerização Proteica , Proteínas Recombinantes , Relação Estrutura-Atividade , Termodinâmica
9.
Biochim Biophys Acta Proteins Proteom ; 1865(10): 1267-1273, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28739445

RESUMO

Preparation of modified and hybrid ferritin provides a great opportunity to understand the mechanisms of iron loading/unloading, protein self-assembly, size constrained nanomaterial synthesis and targeted drug delivery. However, the large size (M.W.=490kDa) has been limiting the separation of different modified and/or hybrid ferritin nanocages from each other in their intact assembled form and further characterization. Native polyacrylamide gel electrophoresis (PAGE) separates proteins on the basis of both charge and mass, while maintaining their overall native structure and activity. Altering surface charge distribution by substitution of amino acid residues located at the external surface of ferritin (K104E & D40A) affected the migration rate in native PAGE while internal modification had little effect. Crystal structures confirmed that ferritin nanocages made up of subunits with single amino acid substitutions retain the overall structure of ferritin nanocage. Taking advantage of K104E migration behavior, formation of hybrid ferritins with subunits of wild type (WT) and K104E were confirmed and separated in native PAGE. Cage integrity and iron loading ability (ferritin activity) were also tested. The migration pattern of hybrid ferritins in native PAGE depends on the subunit ratio (WT: K104E) in the ferritin cage. Our work shows that native PAGE can be exploited in nanobiotechnology, by analyzing modifications of large proteins like ferritin. SIGNIFICANCE: Native PAGE, a simple, straight-forward technique, can be used to analyze small modification (by altering external surface charge) in large proteins like ferritin, without disintegrating its self-assembled nanocage structure. In doing so, native PAGE can complement the information obtained from mass spectrometry. The confirmation and separation of modified and hybrid ferritin protein nanocages in native PAGE, opens up various prospects of bio-conjugation, which can be useful in targeted drug delivery, nanobiotechnology and in understanding nature's idea of synthesizing hybrid ferritins in different human tissues.


Assuntos
Ferritinas/química , Lisina/química , Substituição de Aminoácidos/fisiologia , Aminoácidos/química , Ferro/química , Nanotecnologia/métodos , Eletroforese em Gel de Poliacrilamida Nativa/métodos
10.
Biochim Biophys Acta ; 1850(10): 2145-58, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25529299

RESUMO

BACKGROUND: Originally discovered as receptors for immunosuppressive drugs, immunophilins consist of two major groups, FK506 binding proteins (FKBPs) and cyclosporin A binding proteins (cyclophilins, CYPs). Many members in both FKBP and CYP families are peptidyl prolyl isomerases that are involved in protein folding processes, though they share little sequence homology. It is not surprising to find immunophilins in all organisms examined so far, including viruses, bacteria, fungi, plants and animals, as protein folding represents a common process in all living systems. SCOPE OF REVIEW: Studies on plant immunophilins have revealed new functions beyond protein folding and new structural properties beyond that of typical PPIases. This review focuses on the structural and functional diversity of plant FKBPs and CYPs. MAJOR CONCLUSIONS: The differences in sequence, structure as well as subcellular localization, have added on to the diversity of this family of molecular chaperones. In particular, the large number of immunophilins present in the thylakoid lumen of the photosynthetic organelle, promises to deliver insights into the regulation of photosynthesis, a unique feature of plant systems. However, very little structural information and functional data are available for plant immunophilins. GENERAL SIGNIFICANCE: Studies on the structure and function of plant immunophilins are important in understanding their role in plant biology. By reviewing the structural and functional properties of some immunophilins that represent the emerging area of research in plant biology, we hope to increase the interest of researchers in pursuing further research in this area. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.


Assuntos
Ciclofilinas/metabolismo , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Proteínas de Ligação a Tacrolimo/metabolismo , Ciclofilinas/química , Ciclofilinas/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/genética , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/genética
11.
Plant Cell ; 24(6): 2666-74, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22706283

RESUMO

Cyclophilin38 (CYP38) is one of the highly divergent cyclophilins from Arabidopsis thaliana. Here, we report the crystal structure of the At-CYP38 protein (residues 83 to 437 of 437 amino acids) at 2.39-Å resolution. The structure reveals two distinct domains: an N-terminal helical bundle and a C-terminal cyclophilin ß-barrel, connected by an acidic loop. Two N-terminal ß-strands become part of the C-terminal cyclophilin ß-barrel, thereby making a previously undiscovered domain organization. This study shows that CYP38 does not possess peptidyl-prolyl cis/trans isomerase activity and identifies a possible interaction of CYP38 with the E-loop of chlorophyll protein47 (CP47), a component of photosystem II. The interaction of CYP38 with the E-loop of CP47 is mediated through its cyclophilin domain. The N-terminal helical domain is closely packed together with the putative C-terminal cyclophilin domain and establishes a strong intramolecular interaction, thereby preventing the access of the cyclophilin domain to other proteins. This was further verified by protein-protein interaction assays using the yeast two-hybrid system. Furthermore, the non-Leucine zipper N-terminal helical bundle contains several new elements for protein-protein interaction that may be of functional significance. Together, this study provides the structure of a plant cyclophilin and explains a possible mechanism for autoinhibition of its function through an intramolecular interaction.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Ciclofilinas/química , Ciclofilinas/metabolismo , Proteínas de Arabidopsis/genética , Cristalografia por Raios X , Ciclofilinas/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Complexo de Proteína do Fotossistema II/metabolismo , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Técnicas do Sistema de Duplo-Híbrido
12.
J Biol Chem ; 288(43): 30883-91, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24022489

RESUMO

Cyclomarin A (CymA) was identified as a mycobactericidal compound targeting ClpC1. However, the target was identified based on pulldown experiments and in vitro binding data, without direct functional evidence in mycobacteria. Here we show that CymA specifically binds to the N-terminal domain of ClpC1. In addition we have determined the co-crystal structure of CymA bound to the N-terminal domain of ClpC1 to high resolution. Based on the structure of the complex several mutations were engineered into ClpC1, which showed reduced CymA binding in vitro. The ClpC1 mutants were overexpressed in mycobacteria and two showed resistance to CymA, providing the first direct evidence that ClpC1 is the target of CymA. Phe(80) is important in vitro and in cells for the ClpC1-CymA interaction and this explains why other bacteria are resistant to CymA. A model for how CymA binding to the N-terminal domain of ClpC1 leads to uncontrolled proteolysis by the associated ClpP protease machinery is discussed.


Assuntos
Proteínas de Bactérias/química , Proteínas de Choque Térmico/química , Modelos Moleculares , Mycobacterium tuberculosis/química , Oligopeptídeos/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Mutação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Oligopeptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
13.
Nucleic Acids Res ; 40(13): 6338-52, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22453276

RESUMO

Chromatin organization and composition impart sophisticated regulatory features critical to eukaryotic genomic function. Although DNA sequence-dependent histone octamer binding is important for nucleosome activity, many aspects of this phenomenon have remained elusive. We studied nucleosome structure and stability with diverse DNA sequences, including Widom 601 derivatives with the highest known octamer affinities, to establish a simple model behind the mechanics of sequence dependency. This uncovers the unique but unexpected role of TA dinucleotides and a propensity for G|C-rich sequence elements to conform energetically favourably at most locations around the histone octamer, which rationalizes G|C% as the most predictive factor for nucleosome occupancy in vivo. In addition, our findings reveal dominant constraints on double helix conformation by H3-H4 relative to H2A-H2B binding and DNA sequence context-dependency underlying nucleosome structure, positioning and stability. This provides a basis for improved prediction of nucleosomal properties and the design of tailored DNA constructs for chromatin investigations.


Assuntos
DNA/química , Histonas/química , Nucleossomos/química , Animais , Sequência de Bases , Fenômenos Biomecânicos , Modelos Moleculares , Conformação de Ácido Nucleico , Xenopus laevis
14.
Curr Res Struct Biol ; 7: 100136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463934

RESUMO

Histone deacetylases (HDACs), responsible for the removal of acetyl groups from histone tails, are important epigenetic factors. They play a critical role in the regulation of gene expression and are significant in the context of plant growth and development. The Rpd3/Hda1 family of HDACs is reported to regulate key biological processes in plants, such as stress response, seed, embryonic, and floral development. Here, we characterized Arabidopsis thaliana HDA7, a Class I, Rpd3/Hda1 family HDAC. SAXS and AUC results show that the recombinantly expressed and purified histone deacetylase domain of AtHDA7 exists as a monomer in solution. Further, the crystal structure showed AtHDA7 to fold into the typical α/ß arginase fold, characteristic of Rpd3/Hda1 family HDACs. Sequence analysis revealed that the Asp and His residues of the catalytic 'XDXH' motif present in functional Rpd3/Hda1 family HDACs are mutated to Gly and Pro, respectively, in AtHDA7, suggesting that it might be catalytically inactive. The Asp and His residues are important for Zn2+-binding. Not surprisingly, the crystal structure did not have Zn2+ bound in the catalytic pocket, which is essential for the HDAC activity. Further, our in vitro activity assay revealed AtHDA7 to be inactive as an HDAC. A search in the sequence databases suggested that homologs of AtHDA7 are found exclusively in the Brassicaceae family to which Arabidopsis belongs. It is possible that HDA7 descended from HDA6 through whole genome duplication and triplication events during evolution, as suggested in a previous phylogenetic study.

15.
Int J Biol Macromol ; 253(Pt 2): 126771, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37683752

RESUMO

Antibiotics form our frontline therapy against disease-causing bacteria. Unfortunately, antibiotic resistance is becoming more common, threatening a future where these medications can no longer cure infections. Furthermore, the emergence of multidrug-resistant (MDR), totally drug-resistant (TDR), and extensively drug-resistant (XDR) tuberculosis has increased the urgency of discovering new therapeutic leads with unique modes of action. Some natural peptides derived from actinomycetes, such as Cyclomarin A, Lassomycin, Rufomycin I, and Ecumicin, have potent and specific bactericidal activity against Mycobacterium tuberculosis, with the specificity owing to the fact that these peptides target the ClpC1 ATPase, an essential enzyme in mycobacteria, and inhibit/activate the proteolytic activity of the ClpC1/P1/P2 complex that participates in protein homeostasis. Here, we report the high-resolution crystal structure of the N-terminal domain of ClpC1 (ClpC1 NTD) in complex with Lassomycin, showing the specific binding mode of Lassomycin. In addition, the work also compares the Lassomycin complex structure with the previously known structures of ClpC1 NTD in complex with other natural peptides such as Cyclomarin A, Rufomycin I, and Ecumicin.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Tuberculose/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/química
16.
Biochim Biophys Acta Gene Regul Mech ; 1865(7): 194872, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36058470

RESUMO

The nucleoplasmin family of histone chaperones is a key player in governing the dynamic architecture of chromatin, thereby regulating various DNA-templated processes. The crystal structure of the N-terminal domain of Arabidopsis thaliana FKBP43 (AtFKBP43), an FK506-binding immunophilin protein, revealed a characteristic nucleoplasmin fold, thus confirming it to be a member of the FKBP nucleoplasmin class. Small-Angle X-ray Scattering (SAXS) analyses confirmed its pentameric nature in solution, and additional studies confirmed the nucleoplasmin fold to be highly stable. Unlike its homolog AtFKBP53, the AtFKBP43 nucleoplasmin core domain could not interact with histones and required the acidic arms, C-terminal to the core, for histone association. However, SAXS generated low-resolution envelope structure, ITC, and AUC results revealed that an AtFKBP43 pentamer with C-terminal extensions interacts with H2A/H2B dimer and H3/H4 tetramer in an equimolar ratio, like AtFKBP53. Put together, AtFKBP43 belongs to a hitherto unreported subclass of FKBP nucleoplasmins that requires the C-terminal acidic stretches emanating from the core domain for histone interaction.


Assuntos
Arabidopsis , Histonas , Arabidopsis/genética , Cromatina/metabolismo , DNA/metabolismo , Chaperonas de Histonas/química , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Nucleoplasminas/metabolismo , Espalhamento a Baixo Ângulo , Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Difração de Raios X
17.
Int J Biol Macromol ; 206: 670-680, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35218805

RESUMO

Chemically induced dimerization (CID) is used to induce proximity and result in artificial complex formation between a pair of proteins involved in biological processes in cells to investigate and regulate these processes. The induced heterodimerization of FKBP fusion proteins by rapamycin and FK506 has been extensively exploited as a chemically induced dimerization system to regulate and understand highly dynamic cellular processes. Here, we report the crystal structure of the AtFKBP53 FKBD in complex with rapamycin. The crystal packing reveals an unusual feature whereby two rapamycin molecules appear to mediate homodimerization of the FKBD. The triene arm of rapamycin appears to play a significant role in forming this dimer. This forms the first structural report of rapamycin-mediated homodimerization of an FKBP. The structural information on the rapamycin-mediated FKBD dimerization may be employed to design and synthesize covalently linked dimeric rapamycin, which may subsequently serve as a chemically induced dimerization system for the regulation and characterization of cellular processes.


Assuntos
Sirolimo , Tacrolimo , Dimerização , Sirolimo/farmacologia , Tacrolimo/farmacologia , Proteínas de Ligação a Tacrolimo/química
18.
Int J Biol Macromol ; 167: 1273-1280, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189753

RESUMO

Caseinolytic protease-associated chaperones (Clp chaperones) are HSP100 proteins belonging to the family of ATPases having diverse cellular functions, and they occur in various organisms ranging from bacteria to plants and mammals. Most Clp chaperones have a hexameric organization and associate with tetradecameric Clp proteases to recognize and unfold protein substrates that get degraded within the cellular milieu. Vascular plants have a diverse family of Clp chaperones compared to other organisms; wherein, the chloroplasts of Arabidopsis thaliana alone contain four distinct Clp chaperones, such as ClpC1, ClpC2, ClpD, and ClpB3. The paralogs AtClpC1 and AtClpC2 are more than 90% identical, though the extent of functional overlap between the two is not clear. Moreover, in vitro characterization reports are available only for AtClpC2, as AtClpC1 could not be expressed in recombinant form in the past. Herein, using a bacterial expression system, we have successfully expressed and purified AtClpC1 with a short N-terminal truncation, employing a three-step chromatographic purification strategy. We show that AtClpC1 exists as a hexamer in the presence of ATP and MgCl2, as known for other functional Clp chaperones. Further, our SAXS analyses provide a low-resolution envelope structure for the hexameric AtClpC1, which very well fits a ClpC hexamer model.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Proteínas de Cloroplastos/química , Proteínas de Choque Térmico/química , Proteínas Recombinantes/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cromatografia em Gel , Dicroísmo Circular , Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Cloreto de Magnésio/química , Filogenia , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
19.
FEBS Lett ; 595(9): 1328-1349, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33544878

RESUMO

An assembly of multiprotein complexes achieves chromosomal DNA replication at the replication fork. In eukaryotes, proliferating cell nuclear antigen (PCNA) plays a vital role in the assembly of multiprotein complexes at the replication fork and is essential for cell viability. PCNA from several organisms, including Saccharomyces cerevisiae, has been structurally characterised. However, the structural analyses of PCNA from fungal pathogens are limited. Recently, we have reported that PCNA from the opportunistic fungal pathogen Candida albicans complements the essential functions of ScPCNA in S. cerevisiae. Still, it only partially rescues the loss of ScPCNA when the yeast cells are under genotoxic stress. To understand this further, herein, we have determined the crystal structure of CaPCNA and compared that with the existing structures of other fungal and human PCNA. Our comparative structural and in-solution small-angle X-ray scattering (SAXS) analyses reveal that CaPCNA forms a stable homotrimer, both in crystal and in solution. It displays noticeable structural alterations in the oligomerisation interface, P-loop and hydrophobic pocket regions, suggesting its differential function in a heterologous system and avenues for developing specific therapeutics. DATABASES: The PDB and SASBDB accession codes for CaPCNA are 7BUP and SASDHQ9, respectively.


Assuntos
Candida albicans/genética , Antígeno Nuclear de Célula em Proliferação/ultraestrutura , Conformação Proteica , Candida albicans/ultraestrutura , Dano ao DNA/genética , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Espalhamento a Baixo Ângulo , Especificidade da Espécie , Difração de Raios X
20.
Int J Biol Macromol ; 167: 1168-1175, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33197475

RESUMO

White spot syndrome virus (WSSV), the causative agent of white spot disease (WSD) severely affecting crustacean life forms, is highly contagious and forms the principal cause of massive economic losses in the shrimp aquaculture industry. Previous studies have demonstrated thymidylate synthase as a successful anti-cancer therapeutic drug target, leading to various anti-cancer drugs. The differential utilization of nucleotide precursors between white spot syndrome virus and shrimp encouraged us to analyze WSSV-thymidylate synthase (wTS). Here, we report the crystal structures of wTS in its apo-form and as a ternary complex with deoxyuridine monophosphate (dUMP) and methotrexate at a resolution of 2.35 Å and 2.6 Å, respectively. wTS possesses a fold characteristic to known thymidylate synthase (TS) structures. Like other TS structures, the apo-form of wTS displays an open conformation, whereas the wTS ternary complex attains a closed conformation. While the C-terminal loop maintains a typical distance from methotrexate, the Sγ atom of the catalytic Cys is positioned farther from the C6 atom of dUMP. Altogether, we report the first TS structure from a crustacean virus and highlight its distinction from shrimp and other TS structures.


Assuntos
Nucleotídeos de Desoxiuracil/química , Metotrexato/química , Penaeidae/virologia , Timidilato Sintase/química , Vírus da Síndrome da Mancha Branca 1/química , Animais , Crustáceos/virologia , Escherichia coli/química , Humanos , Ligação de Hidrogênio , Ligantes , Camundongos , Modelos Moleculares , Conformação Molecular , Penaeidae/química , Domínios Proteicos , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA