Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1288069, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264499

RESUMO

Introduction: Electrophysiological investigations of intact neural circuits are challenged by the gentle and complex nature of neural tissues. Bi-directional electrophysiological interfacing with the retina, in its intact form, is particularly demanding and currently there is no feasible approach to achieve such investigations. Here we present a feasibility study of a novel soft multi-electrode array suitable for bi-directional electrophysiological study of the intact retina. Methods: Screen-printed soft electrode arrays were developed and tested. The soft probes were designed to accommodate the curvature of the retina in the eye and offer an opportunity to study the retina in its intact form. Results: For the first time, we show both electrical recording and stimulation capabilities from the intact retina. In particular, we demonstrate the ability to characterize retina responses to electrical stimulation and reveal stable, direct, and indirect responses compared with ex-vivo conditions. Discussion: These results demonstrate the unique performances of the new probe while also suggesting that intact retinas retain better stability and robustness than ex-vivo retinas making them more suitable for characterizing retina responses to electrical stimulation.

2.
Front Neurosci ; 16: 829323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281487

RESUMO

Electrophysiological investigations reveal a great deal about the organization and function of the retina. In particular, investigations of explanted retinas with multi electrode arrays are widely used for basic and applied research purposes, offering high-resolution and detailed information about connectivity and structure. Low-resolution, non-invasive approaches are also widely used. Owing to its delicate nature, high-resolution electrophysiological investigations of the intact retina until now are sparse. In this Mini Review, we discuss progress, challenges and opportunities for electrode arrays suitable for high-resolution, multisite electrophysiological interfacing with the intact retina. In particular, existing gaps in achieving bi-directional electrophysiological investigation of the intact retina are discussed.

3.
Front Med Technol ; 3: 675744, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047928

RESUMO

The field of neurostimulation has evolved over the last few decades from a crude, low-resolution approach to a highly sophisticated methodology entailing the use of state-of-the-art technologies. Neurostimulation has been tested for a growing number of neurological applications, demonstrating great promise and attracting growing attention in both academia and industry. Despite tremendous progress, long-term stability of the implants, their large dimensions, their rigidity and the methods of their introduction and anchoring to sensitive neural tissue remain challenging. The purpose of this review is to provide a concise introduction to the field of high-resolution neurostimulation from a technological perspective and to focus on opportunities stemming from developments in materials sciences and engineering to reduce device rigidity while optimizing electrode small dimensions. We discuss how these factors may contribute to smaller, lighter, softer and higher electrode density devices.

4.
J Neural Eng ; 18(6)2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34736225

RESUMO

Objective.Understanding how the retina converts a natural image or an electrically stimulated one into neural firing patterns is the focus of on-going research activities.Ex vivo, the retina can be readily investigated using multi electrode arrays (MEAs). However, MEA recording and stimulation from an intact retina (in the eye) has been so far insufficient.Approach.In the present study, we report new soft carbon electrode arrays suitable for recording and stimulating neural activity in an intact retina. Screen-printing of carbon ink on 20µm polyurethane (PU) film was used to realize electrode arrays with electrodes as small as 40µm in diameter. Passivation was achieved with a holey membrane, realized using laser drilling in a thin (50µm) PU film. Plasma polymerized 3.4-ethylenedioxythiophene was used to coat the electrode array to improve the electrode specific capacitance. Chick retinas, embryonic stage day 13, both explanted and intact inside an enucleated eye, were used.Main results.A novel fabrication process based on printed carbon electrodes was developed and yielded high capacitance electrodes on a soft substrate.Ex vivoelectrical recording of retina activity with carbon electrodes is demonstrated. With the addition of organic photo-capacitors, simultaneous photo-electrical stimulation and electrical recording was achieved. Finally, electrical activity recordings from an intact chick retina (inside enucleated eyes) were demonstrated. Both photosensitive retinal ganglion cell responses and spontaneous retina waves were recorded and their features analyzed.Significance.Results of this study demonstrated soft electrode arrays with unique properties, suitable for simultaneous recording and photo-electrical stimulation of the retina at high fidelity. This novel electrode technology opens up new frontiers in the study of neural tissuein vivo.


Assuntos
Retina , Estimulação Elétrica/métodos , Microeletrodos , Retina/fisiologia
5.
Adv Mater ; 30(25): e1707292, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29717514

RESUMO

An efficient nanoscale semiconducting optoelectronic system is reported, which is optimized for neuronal stimulation: the organic electrolytic photocapacitor. The devices comprise a thin (80 nm) trilayer of metal and p-n semiconducting organic nanocrystals. When illuminated in physiological solution, these metal-semiconductor devices charge up, transducing light pulses into localized displacement currents that are strong enough to electrically stimulate neurons with safe light intensities. The devices are freestanding, requiring no wiring or external bias, and are stable in physiological conditions. The semiconductor layers are made using ubiquitous and nontoxic commercial pigments via simple and scalable deposition techniques. It is described how, in physiological media, photovoltage and charging behavior depend on device geometry. To test cell viability and capability of neural stimulation, photostimulation of primary neurons cultured for three weeks on photocapacitor films is shown. Finally, the efficacy of the device is demonstrated by achieving direct optoelectronic stimulation of light-insensitive retinas, proving the potential of this device platform for retinal implant technologies and for stimulation of electrogenic tissues in general. These results substantiate the conclusion that these devices are the first non-Si optoelectronic platform capable of sufficiently large photovoltages and displacement currents to enable true capacitive stimulation of excitable cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA