Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Bacteriol ; 202(6)2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31871036

RESUMO

Bacteria such as Escherichia coli divide by organizing filaments of FtsZ, a tubulin homolog that assembles into dynamic treadmilling membrane-associated protein filaments at the cell midpoint. FtsA and ZipA proteins are required to tether these filaments to the inner face of the cytoplasmic membrane, and loss of either tether is lethal. ZipA from E. coli and other closely related species harbors a long linker region that connects the essential N-terminal transmembrane domain to the C-terminal globular FtsZ-binding domain, and part of this linker includes a P/Q-rich peptide that is predicted to be intrinsically disordered. We found unexpectedly that several large deletions of the ZipA linker region, including the entire P/Q rich peptide, had no effect on cell division under normal conditions. However, we found that the loss of the P/Q region made cells more resistant to excess levels of FtsA and more sensitive to conditions that displaced FtsA from FtsZ. FtsA also harbors a short ∼20-residue peptide linker that connects the main globular domain with the C-terminal amphipathic helix that is important for membrane binding. In analogy with ZipA, deletion of 11 of the central residues in the FtsA linker had little effect on FtsA function in cell division.IMPORTANCEEscherichia coli cells divide using a cytokinetic ring composed of polymers of the tubulin-like FtsZ. To function properly, these polymers must attach to the inner surface of the cytoplasmic membrane via two essential membrane-associated tethers, FtsA and ZipA. Both FtsA and ZipA contain peptide linkers that connect their membrane-binding domains with their FtsZ-binding domains. Although they are presumed to be crucial for cell division activity, the importance of these linkers has not yet been rigorously tested. Here, we show that large segments of these linkers can be removed with few consequences for cell division, although several subtle defects were uncovered. Our results suggest that ZipA, in particular, can function in cell division without an extended linker.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Divisão Celular/genética , Proteínas do Citoesqueleto/genética , Proteínas de Escherichia coli/genética , Peptídeos/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Transporte/química , Proteínas de Ciclo Celular/química , Proteínas do Citoesqueleto/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Estresse Oxidativo , Peptídeos/química , Fenótipo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Deleção de Sequência
2.
J Bacteriol ; 202(21)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817092

RESUMO

Cell growth and division are coordinated, ensuring homeostasis under any given growth condition, with division occurring as cell mass doubles. The signals and controlling circuit(s) between growth and division are not well understood; however, it is known in Escherichia coli that the essential GTPase Era, which is growth rate regulated, coordinates the two functions and may be a checkpoint regulator of both. We have isolated a mutant of Era that separates its effect on growth and division. When overproduced, the mutant protein Era647 is dominant to wild-type Era and blocks division, causing cells to filament. Multicopy suppressors that prevent the filamentation phenotype of Era647 either increase the expression of FtsZ or decrease the expression of the Era647 protein. Excess Era647 induces complete delocalization of Z rings, providing an explanation for why Era647 induces filamentation, but this effect is probably not due to direct interaction between Era647 and FtsZ. The hypermorphic ftsZ* allele at the native locus can suppress the effects of Era647 overproduction, indicating that extra FtsZ is not required for the suppression, but another hypermorphic allele that accelerates cell division through periplasmic signaling, ftsL*, cannot. Together, these results suggest that Era647 blocks cell division by destabilizing the Z ring.IMPORTANCE All cells need to coordinate their growth and division, and small GTPases that are conserved throughout life play a key role in this regulation. One of these, Era, provides an essential function in the assembly of the 30S ribosomal subunit in Escherichia coli, but its role in regulating E. coli cell division is much less well understood. Here, we characterize a novel dominant negative mutant of Era (Era647) that uncouples these two activities when overproduced; it inhibits cell division by disrupting assembly of the Z ring, without significantly affecting ribosome production. The unique properties of this mutant should help to elucidate how Era regulates cell division and coordinates this process with ribosome biogenesis.


Assuntos
Pontos de Checagem do Ciclo Celular , Divisão Celular , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citologia , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Ligação ao GTP/genética , Proteínas Mutantes/metabolismo , Proteínas de Ligação a RNA/genética
3.
J Bacteriol ; 201(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30478085

RESUMO

The initiation of Escherichia coli cell division requires three proteins, FtsZ, FtsA, and ZipA, which assemble in a dynamic ring-like structure at midcell. Along with the transmembrane protein ZipA, the actin-like FtsA helps to tether treadmilling polymers of tubulin-like FtsZ to the membrane. In addition to forming homo-oligomers, FtsA and ZipA interact directly with the C-terminal conserved domain of FtsZ. Gain-of-function mutants of FtsA are deficient in forming oligomers and can bypass the need for ZipA, suggesting that ZipA may normally function to disrupt FtsA oligomers, although no direct interaction between FtsA and ZipA has been reported. Here, we use in vivo cross-linking to show that FtsA and ZipA indeed interact directly. We identify the exposed surface of FtsA helix 7, which also participates in binding to ATP through its internal surface, as a key interface needed for the interaction with ZipA. This interaction suggests that FtsZ's membrane tethers may regulate each other's activities.IMPORTANCE To divide, most bacteria first construct a protein machine at the plane of division and then recruit the machinery that will synthesize the division septum. In Escherichia coli, this first stage involves the assembly of FtsZ polymers at midcell, which directly bind to membrane-associated proteins FtsA and ZipA to form a discontinuous ring structure. Although FtsZ directly binds both FtsA and ZipA, it is unclear why FtsZ requires two separate membrane tethers. Here, we uncover a new direct interaction between the tethers, which involves a helix within FtsA that is adjacent to its ATP binding pocket. Our findings imply that in addition to their known roles as FtsZ membrane anchors, FtsA and ZipA may regulate each other's structure and function.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Mapeamento de Interação de Proteínas , Análise Mutacional de DNA , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Ligação Proteica , Técnicas do Sistema de Duplo-Híbrido
4.
J Bacteriol ; 200(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29061666

RESUMO

ZipA is essential for cell division in Escherichia coli, acting early in the process to anchor polymers of FtsZ to the cytoplasmic membrane. Along with FtsA, FtsZ and ZipA form a proto-ring at midcell that recruits additional proteins to eventually build the division septum. Cells carrying the thermosensitive zipA1 allele divide fairly normally at 30°C in rich medium but cease dividing at temperatures above 34°C, forming long filaments. In a search for suppressors of the zipA1 allele, we found that deletions of specific genes involved in amino acid biosynthesis could partially rescue cell growth and division at 34°C or 37°C but not at 42°C. Notably, although a diverse group of amino acid biosynthesis gene deletions could partially rescue the growth of zipA1 cells at 34°C, only deletions of genes related to the biosynthesis of threonine, glycine, serine, and methionine could rescue growth at 37°C. Adding exogenous pyridoxal 5-phosphate (PLP), a cofactor for many of the enzymes affected by this study, partially suppressed zipA1 mutant thermosensitivity. For many of the deletions, PLP had an additive rescuing effect on the zipA1 mutant. Moreover, added PLP partially suppressed the thermosensitivity of ftsQ and ftsK mutants and weakly suppressed an ftsI mutant, but it failed to suppress ftsA or ftsZ thermosensitive mutants. Along with the ability of a deletion of metC to partially suppress the ftsK mutant, our results suggest that perturbations of amino acid metabolic pathways, particularly those that redirect the flow of carbon away from the synthesis of threonine, glycine, or methionine, are able to partially rescue some cell division defects.IMPORTANCE Cell division of bacteria, such as Escherichia coli, is essential for their successful colonization. It is becoming increasingly clear that nutritional status and central metabolism can affect bacterial size and shape; for example, a metabolic enzyme (OpgH) can moonlight as a regulator of FtsZ, an essential cell division protein. Here, we demonstrate a link between amino acid metabolism and ZipA, another essential cell division protein that binds directly to FtsZ and tethers it to the cytoplasmic membrane. Our evidence suggests that altering flux through the methionine-threonine-glycine-serine pathways and supplementing with the enzyme cofactor pyridoxal-5-phosphate can partially compensate for an otherwise lethal defect in ZipA, as well as several other cell division proteins.


Assuntos
Aminoácidos/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/fisiologia , Mutação , Aminoácidos/biossíntese , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Deleção de Genes , Redes e Vias Metabólicas , Fosfato de Piridoxal/farmacologia
5.
Mol Microbiol ; 91(3): 508-21, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24330203

RESUMO

TolC is the outer membrane component of tripartite efflux pumps, which expel proteins, toxins and antimicrobial agents from Gram-negative bacteria. Escherichia coli tolC mutants grow well and are slightly elongated in rich media but grow less well than wild-type cells in minimal media. These phenotypes have no physiological explanation as yet. Here, we find that tolC mutants have highly aberrant shapes when grown in M9-glucose medium but that adding iron restores wild-type morphology. When starved for iron, E. coli tolC mutants synthesize but cannot secrete the siderophore enterobactin, which collects in the periplasm. tolC mutants unable to synthesize enterobactin display no growth or morphological defects, and adding exogenous enterobactin recreates these aberrations, implicating this compound as the causative agent. Cells unable to import enterobactin across the outer membrane grow normally, whereas cells that import enterobactin only to the periplasm become morphologically aberrant. Thus, tolC mutants grown in low iron conditions accumulate periplasmic enterobactin, which impairs bacterial morphology, possibly by sequestering iron and inhibiting an iron-dependent reaction involved in cell division or peptidoglycan synthesis. The results also highlight the need to supply sufficient iron when studying TolC-directed export or efflux, to eliminate extraneous physiological effects.


Assuntos
Enterobactina/metabolismo , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Proteínas de Membrana Transportadoras/deficiência , Periplasma/química , Proteínas da Membrana Bacteriana Externa , Meios de Cultura/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Ferro/metabolismo
6.
mBio ; 15(3): e0323523, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38319093

RESUMO

For decades, cells of the Gram-positive bacterial pathogen Staphylococcus aureus were thought to lack a dedicated elongation machinery. However, S. aureus cells were recently shown to elongate before division, in a process that requires a shape elongation division and sporulation (SEDS)/penicillin-binding protein (PBP) pair for peptidoglycan synthesis, consisting of the glycosyltransferase RodA and the transpeptidase PBP3. In ovococci and rod-shaped bacteria, the elongation machinery, or elongasome, is composed of various proteins besides a dedicated SEDS/PBP pair. To identify proteins required for S. aureus elongation, we screened the Nebraska Transposon Mutant Library, which contains transposon mutants in virtually all non-essential staphylococcal genes, for mutants with modified cell shape. We confirmed the roles of RodA/PBP3 in S. aureus elongation and identified GpsB, SsaA, and RodZ as additional proteins involved in this process. The gpsB mutant showed the strongest phenotype, mediated by the partial delocalization from the division septum of PBP2 and PBP4, two penicillin-binding proteins that synthesize and cross-link peptidoglycan. Increased levels of these PBPs at the cell periphery versus the septum result in higher levels of peptidoglycan insertion/crosslinking throughout the entire cell, possibly overriding the RodA/PBP3-mediated peptidoglycan synthesis at the outer edge of the septum and/or increasing stiffness of the peripheral wall, impairing elongation. Consequently, in the absence of GpsB, S. aureus cells become more spherical. We propose that GpsB has a role in the spatio-temporal regulation of PBP2 and PBP4 at the septum versus cell periphery, contributing to the maintenance of the correct cell morphology in S. aureus. IMPORTANCE: Staphylococcus aureus is a Gram-positive clinical pathogen, which is currently the second cause of death by antibiotic-resistant infections worldwide. For decades, S. aureus cells were thought to be spherical and lack the ability to undergo elongation. However, super-resolution microscopy techniques allowed us to observe the minor morphological changes that occur during the cell cycle of this pathogen, including cell elongation. S. aureus elongation is not required for normal growth in laboratory conditions. However, it seems to be essential in the context of some infections, such as osteomyelitis, during which S. aureus cells apparently elongate to invade small channels in the bones. In this work, we uncovered new determinants required for S. aureus cell elongation. In particular, we show that GpsB has an important role in the spatio-temporal regulation of PBP2 and PBP4, two proteins involved in peptidoglycan synthesis, contributing to the maintenance of the correct cell morphology in S. aureus.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/genética , Proteínas de Bactérias/metabolismo , Peptidoglicano/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Infecções Estafilocócicas/microbiologia , Morfogênese , Parede Celular/metabolismo
7.
mBio ; 12(6): e0252921, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903053

RESUMO

In most bacteria, cell division is centrally organized by the FtsZ protein, which assembles into dynamic filaments at the division site along the cell membrane that interact with other key cell division proteins. In gammaproteobacteria such as Escherichia coli, FtsZ filaments are anchored to the cell membrane by two essential proteins, FtsA and ZipA. Canonically, this interaction was believed to be mediated solely by the FtsZ C-terminal peptide (CTP) domain that interacts with these and several other regulatory proteins. However, we now provide evidence of a second interaction between FtsZ and ZipA. Using site-specific photoactivated cross-linking, we identified a noncanonical FtsZ-binding site on ZipA on the opposite side from the FtsZ CTP-binding pocket. Cross-linking at this site was unaffected by the truncation of the FtsZ linker and CTP domains, indicating that this noncanonical site must interact directly with the globular core domain of FtsZ. Mutations introduced into either the canonical or noncanonical binding sites on ZipA disrupted photo-cross-linking with FtsZ and normal ZipA function in cell division, suggesting that both binding modes are important for normal cell growth and division. One mutation at the noncanonical face was also found to suppress defects of several other canonical and noncanonical site mutations in ZipA, suggesting there is some interdependence between the two sites. Taken together, these results suggest that ZipA employs a two-pronged FtsZ-binding mechanism. IMPORTANCE The tubulin homolog FtsZ plays a central early role in organizing bacterial cell division proteins at the cytoplasmic membrane. However, FtsZ does not directly interact with the membrane itself, instead relying on proteins such as FtsA to tether it to the membrane. In gammaproteobacteria, ZipA serves as a second essential membrane anchor along with FtsA. Although FtsA has a unique role in activating synthesis of the cell division septum, and ZipA may in turn activate FtsA, it was thought that both proteins interacted only with the conserved C terminus of FtsZ and were essentially interchangeable in their ability to tether FtsZ to the membrane. Here we challenge this view, providing evidence that ZipA directly contacts both the C terminus and the core domain of FtsZ. Such a two-pronged interaction between ZipA and FtsZ suggests that ZipA and FtsA may serve distinct membrane-anchoring roles for FtsZ.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Divisão Celular , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Mutação , Ligação Proteica , Domínios Proteicos
8.
Medicina (B.Aires) ; 59(2): 138-42, 1999. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-234493

RESUMO

Acinetobacter baumanni causa frecuentemente infecciones intrahospitalarias endémicas y epidémicas, y inminente control de las mismas requiere un método de tipificación clonal sencillo y rápido. Para evaluar los métodos basados en la reacción en cadena de la polimerasa (PCR) como marcadores epidemiológicos, se determinó la concordancia epidemiológica (CE) y el índice discriminatorio (ID) de 2 de ellos: 1) cebadores arbitrarios (AP-PCR), y 2) cebadores con secuencias rep (repetitive extragenic palindrome), (REP-PCR). Los resultados fueron comparados con la ribotipificación utilizando las enzimas de restricción EcoRI, BgI II y ClaI. Se analizaron 69 aislamientos de A. baumannii (15 epidemiológicamente no relacionados, 31 recuperados durante 2 brotes epidémicos y 23 aislados de infecciones endémicas). El ID de la ribotificación, AP-PCR y REP-PCR fue 0.915, 0.904 y 0.847, respectivamente. La CE de los 3 métodos frente a los 2 brotes epidémicos fue de 100 por ciento y de 83 por ciento respectivamente, identificando igual número de aislamientos del clon epidémico y de los co-transferidos. En el caso de las infecciones endémicas, la ribotipificación identificó 4 clones residentes, y AP-PCR y REP-PCR sólo tres. Sin embargo, los 3 métodos evidenciaron el clon predominante. Las principales ventajas de REP-PCR frente a AP-PCR fueron su mayor reproducibilidad y fácil estandarización. Estas condiciones unidas a la semejante CE de los 3 métodos, convertirían a REP-PCR en un marcador epidemiológico adecuado para proporcionar una rápida información frente a las infecciones nosocomiales por A. baumannii.


Assuntos
Humanos , Infecções por Acinetobacter/microbiologia , Acinetobacter/isolamento & purificação , Infecção Hospitalar/microbiologia , Reação em Cadeia da Polimerase/métodos , Infecções por Acinetobacter/epidemiologia , Técnicas de Tipagem Bacteriana , Infecção Hospitalar/epidemiologia , DNA Bacteriano/análise
9.
Medicina [B.Aires] ; 59(2): 138-42, 1999. ilus, tab
Artigo em Espanhol | BINACIS | ID: bin-16205

RESUMO

Acinetobacter baumanni causa frecuentemente infecciones intrahospitalarias endémicas y epidémicas, y inminente control de las mismas requiere un método de tipificación clonal sencillo y rápido. Para evaluar los métodos basados en la reacción en cadena de la polimerasa (PCR) como marcadores epidemiológicos, se determinó la concordancia epidemiológica (CE) y el índice discriminatorio (ID) de 2 de ellos: 1) cebadores arbitrarios (AP-PCR), y 2) cebadores con secuencias rep (repetitive extragenic palindrome), (REP-PCR). Los resultados fueron comparados con la ribotipificación utilizando las enzimas de restricción EcoRI, BgI II y ClaI. Se analizaron 69 aislamientos de A. baumannii (15 epidemiológicamente no relacionados, 31 recuperados durante 2 brotes epidémicos y 23 aislados de infecciones endémicas). El ID de la ribotificación, AP-PCR y REP-PCR fue 0.915, 0.904 y 0.847, respectivamente. La CE de los 3 métodos frente a los 2 brotes epidémicos fue de 100 por ciento y de 83 por ciento respectivamente, identificando igual número de aislamientos del clon epidémico y de los co-transferidos. En el caso de las infecciones endémicas, la ribotipificación identificó 4 clones residentes, y AP-PCR y REP-PCR sólo tres. Sin embargo, los 3 métodos evidenciaron el clon predominante. Las principales ventajas de REP-PCR frente a AP-PCR fueron su mayor reproducibilidad y fácil estandarización. Estas condiciones unidas a la semejante CE de los 3 métodos, convertirían a REP-PCR en un marcador epidemiológico adecuado para proporcionar una rápida información frente a las infecciones nosocomiales por A. baumannii. (AU)


Assuntos
Humanos , Estudo Comparativo , Acinetobacter/isolamento & purificação , Infecções por Acinetobacter/microbiologia , Infecção Hospitalar/microbiologia , Reação em Cadeia da Polimerase/métodos , Técnicas de Tipagem Bacteriana , Infecções por Acinetobacter/epidemiologia , DNA Bacteriano/análise , Infecção Hospitalar/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA