Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Physiol Rev ; 99(2): 1281-1324, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30864875

RESUMO

Numerous studies have demonstrated that endothelial cells are capable of undergoing endothelial to mesenchymal transition (EndMT), a newly recognized type of cellular transdifferentiation. EndMT is a complex biological process in which endothelial cells adopt a mesenchymal phenotype displaying typical mesenchymal cell morphology and functions, including the acquisition of cellular motility and contractile properties. Endothelial cells undergoing EndMT lose the expression of endothelial cell-specific proteins such as CD31/platelet-endothelial cell adhesion molecule, von Willebrand factor, and vascular-endothelial cadherin and initiate the expression of mesenchymal cell-specific genes and the production of their encoded proteins including α-smooth muscle actin, extra domain A fibronectin, N-cadherin, vimentin, fibroblast specific protein-1, also known as S100A4 protein, and fibrillar type I and type III collagens. Transforming growth factor-ß1 is considered the main EndMT inducer. However, EndMT involves numerous molecular and signaling pathways that are triggered and modulated by multiple and often redundant mechanisms depending on the specific cellular context and on the physiological or pathological status of the cells. EndMT participates in highly important embryonic development processes, as well as in the pathogenesis of numerous genetically determined and acquired human diseases including malignant, vascular, inflammatory, and fibrotic disorders. Despite intensive investigation, many aspects of EndMT remain to be elucidated. The identification of molecules and regulatory pathways involved in EndMT and the discovery of specific EndMT inhibitors should provide novel therapeutic approaches for various human disorders mediated by EndMT.


Assuntos
Doença , Transição Epitelial-Mesenquimal/fisiologia , Animais , Desenvolvimento Embrionário , Transição Epitelial-Mesenquimal/genética , Humanos
2.
PLoS Pathog ; 20(6): e1011883, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838057

RESUMO

ATP-binding cassette (ABC) transport systems are crucial for bacteria to ensure sufficient uptake of nutrients that are not produced de novo or improve the energy balance. The cell surface of the pathobiont Streptococcus pneumoniae (pneumococcus) is decorated with a substantial array of ABC transporters, critically influencing nasopharyngeal colonization and invasive infections. Given the auxotrophic nature of pneumococci for certain amino acids, the Ami ABC transporter system, orchestrating oligopeptide uptake, becomes indispensable in host compartments lacking amino acids. The system comprises five exposed Oligopeptide Binding Proteins (OBPs) and four proteins building the ABC transporter channel. Here, we present a structural analysis of all the OBPs in this system. Multiple crystallographic structures, capturing both open and closed conformations along with complexes involving chemically synthesized peptides, have been solved at high resolution providing insights into the molecular basis of their diverse peptide specificities. Mass spectrometry analysis of oligopeptides demonstrates the unexpected remarkable promiscuity of some of these proteins when expressed in Escherichia coli, displaying affinity for a wide range of peptides. Finally, a model is proposed for the complete Ami transport system in complex with its various OBPs. We further disclosed, through in silico modelling, some essential structural changes facilitating oligopeptide transport into the cellular cytoplasm. Thus, the structural analysis of the Ami system provides valuable insights into the mechanism and specificity of oligopeptide binding by the different OBPs, shedding light on the intricacies of the uptake mechanism and the in vivo implications for this human pathogen.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias , Oligopeptídeos , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Oligopeptídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Cristalografia por Raios X , Modelos Moleculares , Lipoproteínas
3.
PLoS Pathog ; 18(1): e1010241, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35077524

RESUMO

Salmonella enterica causes intracellular infections that can be limited to the intestine or spread to deeper tissues. In most cases, intracellular bacteria show moderate growth. How these bacteria face host defenses that recognize peptidoglycan, is poorly understood. Here, we report a high-resolution structural analysis of the minute amounts of peptidoglycan purified from S. enterica serovar Typhimurium (S. Typhimurium) infecting fibroblasts, a cell type in which this pathogen undergoes moderate growth and persists for days intracellularly. The peptidoglycan of these non-proliferating bacteria contains atypical crosslinked muropeptides with stem peptides trimmed at the L-alanine-D-glutamic acid-(γ) or D-glutamic acid-(γ)-meso-diaminopimelic acid motifs, both sensed by intracellular immune receptors. This peptidoglycan has a reduced glycan chain average length and ~30% increase in the L,D-crosslink, a type of bridge shared by all the atypical crosslinked muropeptides identified. The L,D-transpeptidases LdtD (YcbB) and LdtE (YnhG) are responsible for the formation of these L,D-bridges in the peptidoglycan of intracellular bacteria. We also identified in a fraction of muropeptides an unprecedented modification in the peptidoglycan of intracellular S. Typhimurium consisting of the amino alcohol alaninol replacing the terminal (fourth) D-alanine. Alaninol was still detectable in the peptidoglycan of a double mutant lacking LdtD and LdtE, thereby ruling out the contribution of these enzymes to this chemical modification. Remarkably, all multiple mutants tested lacking candidate enzymes that either trim stem peptides or form the L,D-bridges retain the capacity to modify the terminal D-alanine to alaninol and all attenuate NF-κB nuclear translocation. These data inferred a potential role of alaninol-containing muropeptides in attenuating pro-inflammatory signaling, which was confirmed with a synthetic tetrapeptide bearing such amino alcohol. We suggest that the modification of D-alanine to alaninol in the peptidoglycan of non-proliferating intracellular S. Typhimurium is an editing process exploited by this pathogen to evade immune recognition inside host cells.


Assuntos
Peptidoglicano/química , Peptidoglicano/imunologia , Infecções por Salmonella/imunologia , Salmonella enterica/imunologia , Salmonella enterica/metabolismo , Linhagem Celular , Parede Celular/química , Parede Celular/imunologia , Parede Celular/metabolismo , Humanos , Tolerância Imunológica/imunologia , Peptidoglicano/metabolismo
4.
Connect Tissue Res ; 65(2): 161-169, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38436275

RESUMO

OBJECTIVE: The COL1A1 proximal promoter contains two GC-rich regions and two inverted CCAAT boxes. The transcription factors Sp1 and CBF bind to the GC sequence at -122 to -115 bp and the inverted CCAAT box at -101 to -96 bp, respectively, and stimulate COL1A1 transcriptional activity. METHODS: To further define the regulatory mechanisms controlling COL1A1 expression by Sp1 and CBF, we introduced 2, 4, 6, or 8 thymidine nucleotides (T-tracts) at position -111 bp of the COL1A1 gene promoter to increase the physical distance between these two binding sites and examined in vitro the transcriptional activities of the resulting constructs and their response to TGF-ß1.`. RESULTS: Insertion of 2 or 4 nucleotides decreased COL1A1 promoter activity by up to 70%. Furthermore, the expected increase in COL1A1 transcription in response to TGF-ß1 was abolished. Computer modeling of the modified DNA structure indicated that increasing the physical distance between the Sp1 and CBF binding sites introduces a rotational change in the DNA topology that disrupts the alignment of Sp1 and CBF binding sites and likely alters protein-protein interactions among these transcription factors or their associated co-activators. CONCLUSION: The topology of the COL1A1 proximal promoter is crucial in determining the transcriptional activity of the gene and its response to the stimulatory effects of TGF-ß1.


Assuntos
Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/metabolismo , DNA , Nucleotídeos
5.
Rheumatology (Oxford) ; 62(3): 999-1008, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35944210

RESUMO

SSc is a systemic autoimmune disease of unknown etiology characterized by frequently progressive cutaneous and internal organ fibrosis causing severe disability, organ failure and high mortality. A remarkable feature of SSc is the extension of the fibrotic alterations to nonaffected tissues. The mechanisms involved in the extension of fibrosis have remained elusive. We propose that this process is mediated by exosome microvesicles released from SSc-affected cells that induce an activated profibrotic phenotype in normal or nonaffected cells. Exosomes are secreted microvesicles involved in an intercellular communication system. Exosomes can transfer their macromolecular content to distant target cells and induce paracrine effects in the recipient cells, changing their molecular pathways and gene expression. Confirmation of this hypothesis may identify the molecular mechanisms responsible for extension of the SSc fibrotic process from affected cells to nonaffected cells and may allow the development of novel therapeutic approaches for the disease.


Assuntos
Exossomos , Escleroderma Sistêmico , Humanos , Fibrose , Fibroblastos/metabolismo , Fenótipo
6.
Clin Exp Rheumatol ; 39(6): 1298-1306, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33253099

RESUMO

OBJECTIVES: Systemic sclerosis (SSc) is characterised by severe fibroproliferative vasculopathy, fibrosis in skin and multiple internal organs, and humoral, cellular and innate immunity abnormalities. Vascular alterations are the earliest and most severe SSc manifestations, however, the mechanisms responsible have remained elusive. To investigate the molecular abnormalities involved in SSc-vasculopathy we examined global gene expression differences between highly purified lung microvascular endothelial cells (MVECs) from patients with SSc-interstitial lung disease (SSc-ILD) and normal lung MVECs. METHODS: MVECs were isolated from fresh transplanted lungs from patients with SSc-ILD. Sequential CD31 and CD102 immunopurification was performed to obtain highly purified CD31+/CD102+ lung MVECs. Global gene expression analysis was successfully performed in CD31+/CD102+ MVEC from two SSc-ILD patients and from two normal lungs. RT-PCR, Western blots, and indirect immunofluorescence validated the gene expression results. RESULTS: Numerous interferon-regulated genes (IRGs) including IFI44, IFI44L, IFI6, IFIH1, IFIT1, ISG-15, BST-2/Tetherin, and RSAD2/Viperin, genes encoding innate immunity antiviral responses (OAS1, OAS2, OAS3, OASL) and antiviral MX1 and MX2 proteins, and mesenchymal cell-specific genes were significantly overexpressed in CD31+/CD102+ SSc-ILD lung MVECs. CONCLUSIONS: Highly purified CD31+/CD102+ MVECs from lungs from SSc patients with end stage SSc-ILD displayed remarkable overexpression of numerous IRGs and of genes encoding antiviral innate immune response and antiviral proteins. These observations suggest that interferon-induced and antiviral response proteins may participate in the pathogenesis of SSc vasculopathy and SSc-ILD. The CD31+/CD102+ lung MVECs from SSc-ILD also showed elevated expression of mesenchymal cell-specific genes confirming the presence of endothelial to mesenchymal transition in SSc-ILD.


Assuntos
Fatores de Restrição Antivirais/genética , Interferons , Doenças Pulmonares Intersticiais , Escleroderma Sistêmico , Células Endoteliais , Humanos , Pulmão , Doenças Pulmonares Intersticiais/genética , Escleroderma Sistêmico/genética
7.
Rheumatology (Oxford) ; 59(10): 3092-3098, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32442272

RESUMO

OBJECTIVE: SSc is a systemic fibrotic disease affecting skin, numerous internal organs and the microvasculature. The molecular pathogenesis of SSc tissue fibrosis has not been fully elucidated, although TGF-ß1 plays a crucial role. The Hic-5 protein encoded by the TGF-ß1-inducible HIC-5 gene participates in numerous TGF-ß-mediated pathways, however, the role of Hic-5 in SSc fibrosis has not been investigated. The aim of this study was to examine HIC-5 involvement in SSc tissue fibrosis. METHODS: Affected skin from three patients with diffuse SSc and dermal fibroblasts cultured from affected and non-affected SSc skin were examined for HIC-5 and COL1A1 gene expression. Real-time PCR, IF microscopy, western blotting and small interfering RNA-mediated HIC-5 were performed. RESULTS: HIC-5 and COL1A1 transcripts and Hic-5, type 1 collagen (COL1) and α-smooth muscle actin (α-SMA) protein levels were increased in clinically affected SSc skin compared with normal skin and in cultured dermal fibroblasts from affected SSc skin compared with non-affected skin fibroblasts from the same patients. HIC-5 knockdown caused a marked reduction of COL1 production in SSc dermal fibroblasts. CONCLUSION: HIC-5 expression is increased in affected SSc skin compared with skin from normal individuals. Affected SSc skin fibroblasts display increased HIC-5 and COL1A1 expression compared with non-affected skin fibroblasts from the same patients. Hic-5 protein was significantly increased in cultured SSc dermal fibroblasts. HIC-5 mRNA knockdown in SSc fibroblasts caused >50% reduction of COL1 production. Although these are preliminary results owing to the small number of skin samples studied, they indicate that Hic-5 plays a role in the profibrotic activation of SSc dermal fibroblasts and may represent a novel molecular target for antifibrotic therapy in SSc.


Assuntos
Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/metabolismo , Escleroderma Sistêmico/metabolismo , Actinas/metabolismo , Colágeno/metabolismo , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/efeitos dos fármacos , Proteínas com Domínio LIM/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Escleroderma Sistêmico/genética , Pele/metabolismo , Fator de Crescimento Transformador beta/farmacologia
8.
Rheumatology (Oxford) ; 57(10): 1698-1706, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29140474

RESUMO

There is an important unmet need for clinically validated non-invasive biomarkers for SSc diagnosis, assessment of disease activity, extent of internal organ involvement, therapeutic response and prognosis. There is also an unmet need for biomarkers to accurately differentiate primary RP from recent onset RP evolving into SSc. The lack of sensitive and specific biomarkers for SSc and SSc-associated RP is a limitation for the optimal clinical management of these patients. The development of highly sensitive and specific proteomic analysis employing aptamers and the expansion in the number of proteins that can be specifically identified by aptamer proteomics have opened new horizons for biomarker discovery. Here, we review the background and rationale for aptamer proteomic analysis for the identification of novel non-invasive biomarkers for SSc and recent onset RP evolving into SSc. Large scale application of aptamer proteomic platforms for this purpose will be of substantial value for the precision and personalized medical care of SSc patients. These studies will be placed in context by comparison with proteomic biomarker studies performed for other rheumatological inflammatory and autoimmune diseases.


Assuntos
Proteômica/métodos , Escleroderma Sistêmico/diagnóstico , Biomarcadores/análise , Humanos
9.
Clin Exp Rheumatol ; 36 Suppl 113(4): 36-44, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30277861

RESUMO

OBJECTIVES: To examine the effects of simultaneous inhibition of c-Abl and Src kinases on the gene expression and in vitro production of profibrotic molecules by dermal fibroblasts from patients with diffuse systemic sclerosis (SSc) of recent onset. METHODS: Dermal fibroblasts from normal individuals or from patients with diffuse cutaneous SSc fulfilling the American College of Rheumatology/EULAR SSc classification criteria were cultured in media containing increasing concentrations of the dual c-Abl and Src kinase inhibitor Bosutinib for 24 h. Total soluble collagen in cell culture supernatants was quantified. Western blots were performed for quantitative assessment of type I collagen, fibronectin, and α-smooth muscle actin (α-SMA) production. Quantitative PCR was performed to examine the effects of Bosutinib on the expression of profibrotic and TGF-ß-responsive genes in cultured SSc dermal fibroblasts. RESULTS: Simultaneous inhibition of c-Abl and Src kinases with Bosutinib reduced the expression of numerous fibrosis-associated genes including COL1A1, COL1A3, FN, and TGFß and the production of the corresponding proteins by SSc dermal fibroblasts. Bosutinib also decreased the transition of normal dermal fibroblasts into activated myofibroblasts induced by TGF-ß as evidenced by reduction of α-SMA in cell extracts from normal and SSc dermal fibroblasts. CONCLUSIONS: Simultaneous inhibition of c-Abl and Src kinases with Bosutinib abrogates the exaggerated expression of genes encoding fibrillar collagens, fibronectin, and TGF-ß-responsive genes and reduces type I collagen, fibronectin and α-SMA production by SSc dermal fibroblasts in vitro. Bosutinib also abrogates TGF- ß-induced transition of normal fibroblasts to activated myofibroblasts. These results indicate that inhibition of c-Abl and Src kinases activity may be an effective disease modifying antifibrotic therapeutic intervention for SSc.


Assuntos
Compostos de Anilina/farmacologia , Fibroblastos/efeitos dos fármacos , Nitrilas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Quinolinas/farmacologia , Esclerodermia Difusa/tratamento farmacológico , Pele/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores , Estudos de Casos e Controles , Células Cultivadas , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/enzimologia , Fibroblastos/patologia , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Esclerodermia Difusa/enzimologia , Esclerodermia Difusa/genética , Esclerodermia Difusa/patologia , Transdução de Sinais/efeitos dos fármacos , Pele/enzimologia , Pele/patologia , Quinases da Família src/metabolismo
10.
Lab Invest ; 97(7): 806-818, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28346399

RESUMO

In this study, we tested the hypothesis that constitutive endothelial cell-specific activation of TGF-ß signaling induces tissue fibrosis and vasculopathy resembling the characteristic fibrotic and vascular alterations of systemic sclerosis. Transgenic mice with inducible expression of a constitutively active TGF-ß receptor I specifically in endothelial cells were generated by intercrossing mice harboring a constitutively active TGF-ß receptor I with a mouse strain containing the endothelial cell-specific Cdh5 gene promoter directing the tamoxifen-inducible expression of the Cre-ERT2 cassette. Administration of tamoxifen to these mice would result in constitutive TGF-ß activation and signaling confined to endothelial lineage cells. The effects of constitutive TGF-ß endothelial cell activation were assessed by histopathological examination of skin and various internal organs, tissue hydroxyproline analysis, and assessment of expression of myofibroblast differentiation and TGF-ß signaling genes employing real-time PCR and immunohistochemical staining of lung vessels for endothelial- and myofibroblast-specific proteins. Constitutive TGFß-1 signaling in endothelial cells resulted in cutaneous and visceral fibrosis with prominent fibrotic involvement of the lungs and severe perivascular and subendothelial fibrosis of small arterioles. A marked increase in the expression of fibrosis-associated genes and of genes indicative of myofibroblast activation was also found. Confocal microscopy of lung vessels showed evidence consistent with the induction of endothelial-to-mesenchymal transition (EndoMT). Taken together, our data indicate that transgenic mice with constitutive endothelial cell-specific activation of TGF-ß signaling display severe cutaneous, pulmonary, and microvascular fibrosis resembling the fibrotic and microvascular alterations characteristic of systemic sclerosis.


Assuntos
Células Endoteliais/metabolismo , Fibrose/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Feminino , Hidroxiprolina , Imuno-Histoquímica , Pulmão/química , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Especificidade de Órgãos , Tamoxifeno , Fator de Crescimento Transformador beta/genética
11.
Clin Exp Rheumatol ; 35 Suppl 106(4): 21-30, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28094758

RESUMO

OBJECTIVES: Exosomes are lipid bilayer-bound microvesicles containing various macromolecules including numerous microRNA (miRNA). Exosomes mediate intercellular communication by fusing and releasing their macromolecular content into target cells. Here, we analysed the content of profibrotic and antifibrotic miRNAs in exosomes isolated from the serum of systemic sclerosis (SSc) patients and tested their ability to induce a profibrotic phenotype in normal human dermal fibroblasts in vitro. METHODS: Exosomes were isolated from serum from patients with limited cutaneous or diffuse cutaneous SSc and were characterised by Nanosight Particle Tracking Analysis, exosome antibody arrays, and transmission electron microscopy. The content of nine profibrotic and eighteen antifibrotic miRNA was assessed in the isolated exosomes by semiquantitative real time PCR. The effects of the isolated exosomes on cultured normal human dermal fibroblasts were assessed by real time PCR and Western blotting. RESULTS: The isolated serum exosomes displayed the expected exosome size and morphology and contained characteristic exosome proteins. Six profibrotic miRNAs were increased and ten antifibrotic miRNAs were decreased in SSc serum exosomes compared to normal serum exosomes. The levels of eight miRNA were significantly different between exosomes from limited and diffuse SSc. Exosomes isolated from both limited or diffuse SSc patients caused dose-dependent stimulation of profibrotic gene expression and type I collagen and fibronectin production and secretion in normal human dermal fibroblasts in vitro. CONCLUSIONS: Serum exosomes from SSc patients contain miRNA displaying a markedly profibrotic profile and induce a profibrotic phenotype in target normal fibroblasts in vitro suggesting a plausible mechanism for the extension of the fibrotic SSc process to non-affected tissues.


Assuntos
Exossomos/metabolismo , MicroRNAs/análise , Escleroderma Sistêmico/patologia , Adulto , Células Cultivadas , Colágeno Tipo I/genética , Exossomos/ultraestrutura , Feminino , Fibroblastos/metabolismo , Fibronectinas/biossíntese , Fibrose , Humanos , Pessoa de Meia-Idade , Fenótipo , Escleroderma Sistêmico/sangue , Pele/citologia , Pele/metabolismo
12.
Curr Rheumatol Rep ; 17(1): 473, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25475596

RESUMO

Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting frequently in severe disability and high mortality. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been fully elucidated, one important observation from a large US population study was the demonstration of a late onset of SSc with a peak incidence between 45 and 54 years of age in African-American females and between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc as a disease of aging, the possibility that senescence changes in the cellular elements involved in its pathogenesis may play a role has not been thoroughly examined. The process of cellular senescence is extremely complex, and the mechanisms, molecular events, and signaling pathways involved have not been fully elucidated; however, there is strong evidence to support the concept that oxidative stress caused by the excessive generation of reactive oxygen species may be one important mechanism involved. On the other hand, numerous studies have implicated oxidative stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative stress induces cellular senescence and that the molecular events associated with this complex process play an important role in the fibrotic and fibroproliferative vasculopathy characteristic of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in SSc pathogenesis will be reviewed.


Assuntos
Senescência Celular/fisiologia , NADPH Oxidases/fisiologia , Estresse Oxidativo/fisiologia , Escleroderma Sistêmico/patologia , Fibrose , Humanos , NADPH Oxidase 4 , Espécies Reativas de Oxigênio/metabolismo , Escleroderma Sistêmico/fisiopatologia
14.
Arthritis Rheum ; 64(6): 1978-89, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22161819

RESUMO

OBJECTIVE: Platelet-derived growth factor (PDGF) and its receptor, PDGFR, promote fibrosis in systemic sclerosis (SSc; scleroderma) dermal fibroblasts, and such cells in scleroderma skin lesions produce excessive reactive oxygen species (ROS). PDGFR is phosphorylated upon PDGF stimulation, and is dephosphorylated by protein tyrosine phosphatases (PTPs), including PTP1B. This study was undertaken to determine whether the thiol-sensitive PTP1B is affected by ROS in SSc dermal fibroblasts, thereby enhancing the phosphorylation of PDGFR and synthesis of type I collagen. This study also sought to investigate the effect of a thiol antioxidant, N-acetylcysteine (NAC), in SSc. METHODS: Fibroblasts were isolated from the skin of patients with diffuse SSc and normal healthy donors for cell culture experiments and immunofluorescence analyses. A phosphate release assay was used to determine the activity of PTP1B. RESULTS: Levels of ROS and type I collagen were significantly higher and amounts of free thiol were significantly lower in SSc fibroblasts compared to normal fibroblasts. After stimulation with PDGF, not only were PDGFR and ERK-1/2 phosphorylated to a greater extent, but also the ability to produce PTP1B was hampered in SSc fibroblasts. The activity of PTP1B was significantly inactivated in SSc fibroblasts as a result of cysteine oxidation by the raised levels of ROS, which was confirmed by the oxidation of multiple PTPs, including PTP1B, in SSc fibroblasts. Decreased expression of PTP1B in normal fibroblasts led to increased expression of type I collagen. Treatment of the cells with NAC restored the activity of PTP1B, improved the profile of PDGFR phosphorylation, decreased the numbers of tyrosine-phosphorylated proteins and levels of type I collagen, and scavenged ROS in SSc fibroblasts. CONCLUSION: This study describes a new mechanism by which ROS may promote a profibrotic phenotype in SSc fibroblasts through the oxidative inactivation of PTP1B, leading to pronounced activation of PDGFR. The study also presents a novel molecular mechanism by which NAC may act on ROS and PTP1B to provide therapeutic benefit in SSc.


Assuntos
Fibroblastos/metabolismo , Estresse Oxidativo/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Escleroderma Sistêmico/metabolismo , Pele/metabolismo , Acetilcisteína/farmacologia , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Sequestradores de Radicais Livres/farmacologia , Humanos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/patologia , Pele/efeitos dos fármacos , Pele/patologia , Superóxidos/metabolismo
15.
Curr Rheumatol Rev ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37921216

RESUMO

Systemic Sclerosis (SSc) is a systemic autoimmune disease of unknown etiology with a highly complex pathogenesis that despite extensive investigation is not completely understood. The clinical and pathologic manifestations of the disease result from three distinct processes: 1) Severe and frequently progressive tissue fibrosis causing exaggerated and deleterious accumulation of interstitial collagens and other extracellular matrix molecules in the skin and various internal organs; 2) extensive fibroproliferative vascular lesions affecting small arteries and arterioles causing tissue ischemic alterations; and 3) cellular and humoral immunity abnormalities with the production of numerous autoantibodies, some with very high specificity for SSc. The fibrotic process in SSc is one of the main causes of disability and high mortality of the disease. Owing to its essentially universal presence and the severity of its clinical effects, the mechanisms involved in the development and progression of tissue fibrosis have been extensively investigated, however, despite intensive investigation, the precise molecular mechanisms have not been fully elucidated. Several recent studies have suggested that cellular transdifferentiation resulting in the phenotypic conversion of various cell types into activated myofibroblasts may be one important mechanism. Here, we review the potential role that cellular transdifferentiation may play in the development of severe and often progressive tissue fibrosis in SSc.

16.
Am J Pathol ; 179(3): 1074-80, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21763673

RESUMO

The accumulation of a large number of myofibroblasts is responsible for exaggerated and uncontrolled production of extracellular matrix during the development and progression of pathological fibrosis. Myofibroblasts in fibrotic tissues are derived from at least three sources: expansion and activation of resident tissue fibroblasts, transition of epithelial cells into mesenchymal cells (epithelial-mesenchymal transition, EMT), and tissue migration of bone marrow-derived circulating fibrocytes. Recently, endothelial to mesenchymal transition (EndoMT), a newly recognized type of cellular transdifferentiation, has emerged as another possible source of tissue myofibroblasts. EndoMT is a complex biological process in which endothelial cells lose their specific markers and acquire a mesenchymal or myofibroblastic phenotype and express mesenchymal cell products such as α smooth muscle actin (α-SMA) and type I collagen. Similar to EMT, EndoMT can be induced by transforming growth factor (TGF-ß). Recent studies using cell-lineage analysis have demonstrated that EndoMT may be an important mechanism in the pathogenesis of pulmonary, cardiac, and kidney fibrosis, and may represent a novel therapeutic target for fibrotic disorders.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Fibroblastos/patologia , Mesoderma/patologia , Animais , Comunicação Celular/fisiologia , Fibrose , Humanos , Rim/patologia , Camundongos , Miocárdio/patologia , Fibrose Pulmonar/patologia
17.
PLoS One ; 17(12): e0279461, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36548367

RESUMO

BACKGROUND: A major unmet need for Systemic Sclerosis (SSc) clinical management is the lack of biomarkers for the early diagnosis of patients with Raynaud's Phenomenon at high risk of evolving into SSc. OBJECTIVE: To identify proteins contained within serum exosomes employing an aptamer proteomic analysis that may serve to reveal patients with Raynaud's Phenomenon at risk of developing SSc. METHODS: Exosomes were isolated from serum samples from patients with Primary Raynaud's Phenomenon and from patients with Raynaud's Phenomenon harbouring serum antinuclear antibodies (ANA) who may be at high risk of evolving into SSc. The expression of 1,305 proteins was quantified using SOMAscan aptamer proteomics, and associations of the differentially elevated or reduced proteins with the clinical subsets of Raynaud's Phenomenon were assessed. RESULTS: Twenty one differentially elevated and one differentially reduced (absolute fold change >|1.3|) proteins were identified. Principal component analysis using these 22 most differentially expressed proteins resulted in excellent separation of the two Raynaud's Phenomenon clinical subsets. Remarkably, the most differentially elevated proteins are involved in enhanced inflammatory responses, immune cell activation and cell migration, and abnormal vascular functions. CONCLUSION: Aptamer proteomic analysis of circulating exosomes identified differentially elevated or reduced proteins between Raynaud's Phenomenon at high risk of evolving into SSc and Primary Raynaud's Phenomenon patients. Some of these proteins are involved in relevant biological pathways that may play a role in SSc pathogenesis including enhanced inflammatory responses, immune cell activation, and endothelial cell and vascular abnormalities.


Assuntos
Exossomos , Doença de Raynaud , Escleroderma Sistêmico , Humanos , Proteômica , Escleroderma Sistêmico/complicações , Biomarcadores
18.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015168

RESUMO

There is a clear need for novel antiviral concepts to control SARS-CoV-2 infection. Based on the promising anti-coronavirus activity observed for a class of 1,4,4-trisubstituted piperidines, we here conducted a detailed analysis of the structure-activity relationship of these structurally unique inhibitors. Despite the presence of five points of diversity, the synthesis of an extensive series of analogues was readily achieved by Ugi four-component reaction from commercially available reagents. After evaluating 63 analogues against human coronavirus 229E, four of the best molecules were selected and shown to have micromolar activity against SARS-CoV-2. Since the action point was situated post virus entry and lying at the stage of viral polyprotein processing and the start of RNA synthesis, enzymatic assays were performed with CoV proteins involved in these processes. While no inhibition was observed for SARS-CoV-2 nsp12-nsp7-nsp8 polymerase, nsp14 N7-methyltransferase and nsp16/nsp10 2'-O-methyltransferase, nor the nsp3 papain-like protease, the compounds clearly inhibited the nsp5 main protease (Mpro). Although the inhibitory activity was quite modest, the plausibility of binding to the catalytic site of Mpro was established by in silico studies. Therefore, the 1,4,4-trisubstituted piperidines appear to represent a novel class of non-covalent CoV Mpro inhibitors that warrants further optimization and development.

19.
Eur J Med Chem ; 243: 114675, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36075146

RESUMO

Redox homeostasis in trypanosomatids is based on the low-molecular-weight trypanothione, an essential dithiol molecule that is synthetized by trypanothione synthetase (TryS) and maintained in its reduced state by trypanothione disulfide reductase (TryR). The fact that both enzymes are indispensable for parasite survival and absent in the mammalian hosts makes them ideal drug targets against leishmaniasis. Although many efforts have been directed to developing TryR inhibitors, much less attention has been focused on TryS. The screening of an in-house library of 144 diverse molecules using two parallel biochemical assays allowed us to detect 13 inhibitors of L. infantum TryS. Compounds 1 and 3 were characterized as competitive inhibitors with Ki values in the low micromolar range and plausible binding modes for them were identified by automated ligand docking against refined protein structures obtained through computational simulation of an entire catalytic cycle. The proposed binding site for both inhibitors overlaps the polyamine site in the enzyme and, additionally, 1 also occupies part of the ATP site. Compound 4 behaves as a mixed hyperbolic inhibitor with a Ki of 0.8 µM. The activity of 5 is clearly dependent on the concentration of the polyamine substrate, but its kinetic behavior is clearly not compatible with a competitive mode of inhibition. Analysis of the activity of the six best inhibitors against intracellular amastigotes identified 5 as the most potent leishmanicidal candidate, with an EC50 value of 0.6 µM and a selectivity index of 35.


Assuntos
Amida Sintases , Antiprotozoários , Animais , Amida Sintases/metabolismo , NADH NADPH Oxirredutases , Sítios de Ligação , Oxirredução , Antiprotozoários/farmacologia , Antiprotozoários/química , Mamíferos/metabolismo
20.
Eur J Med Chem ; 244: 114878, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36332553

RESUMO

N-methylation of the triazole moiety present in our recently described triazole-phenyl-thiazole dimerization disruptors of Leishmania infantum trypanothione disulfide reductase (LiTryR) led to a new class of potent inhibitors that target different binding sites on this enzyme. Subtle structural changes among representative library members modified their mechanism of action, switching from models of classical competitive inhibition to time-dependent mixed noncompetitive inhibition. X-ray crystallography and molecular modeling results provided a rationale for this distinct behavior. The remarkable potency and selectivity improvements, particularly against intracellular amastigotes, of the LiTryR dimerization disruptors 4c and 4d reveal that they could be exploited as leishmanicidal agents. Of note, L. infantum promastigotes treated with 4c significantly reduced their low-molecular-weight thiol content, thus providing additional evidence that LiTryR is the main target of this novel compound.


Assuntos
Antiprotozoários , Leishmania infantum , Dissulfetos , Antiprotozoários/química , NADH NADPH Oxirredutases , Triazóis/farmacologia , Triazóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA