RESUMO
BACKGROUND: Ex vivo normothermic machine perfusion (NMP) is a promising tool for assessing an isolated kidney prior to transplantation. However, there is no consensus on the perfusate's optimal oxygen-carrying capacity to support renal function. To investigate the association of hemoglobin levels with renal function parameters, a retrospective analysis of isolated, normothermically, perfused porcine kidneys was performed. METHODS: Between 2015 and 2021, a total of 228 kidneys underwent 4 h of NMP with perfusates that varied in hemoglobin levels. A generalized linear model was used to determine the association of hemoglobin levels with time-weighted means of renal function markers, such as fractional sodium excretion (FENa) and creatinine clearance (CrCl). Stratified by baseline hemoglobin level (<4.5, 4.5-6, or >6 mmol/L), these markers were modeled over time using a generalized linear mixed-effects model. All models were adjusted for potential confounders. RESULTS: Until a hemoglobin level of around 5 mmol/L was reached, increasing hemoglobin levels were associated with superior FENa and CrCl. Thereafter, this association plateaued. When hemoglobin levels were categorized, hemoglobin <4.5 mmol/L was associated with worse renal function. Hemoglobin levels were neither significantly associated with proteinuria during NMP nor with ATP levels at the end of NMP. Hemoglobin levels >6 mmol/L showed no additional benefits in renal function. CONCLUSION: In conclusion, we found an association between baseline hemoglobin levels and superior renal function parameters, but not injury, during NMP of porcine kidneys. Furthermore, we show that performing a retrospective cohort study of preclinical data is feasible and able to answer additional questions, reducing the potential use of laboratory animals.