Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Pathol ; 179(1): 400-10, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21703419

RESUMO

Expression of E-cadherin is used to monitor the epithelial phenotype, and its loss is suggestive of epithelial-mesenchymal transition (EMT). EMT triggers tumor metastasis. Exit from EMT is marked by increased E-cadherin expression and is considered necessary for tumor growth at sites of metastasis; however, the mechanisms associated with exit from EMT are poorly understood. Herein are analyzed 185 prostate cancer metastases, with significantly higher E-cadherin expression in bone than in lymph node and soft tissue metastases. To determine the molecular mechanisms of regulation of E-cadherin expression, three stable isogenic cell lines from DU145 were derived that differ in structure, migration, and colony formation on soft agar and Matrigel. When injected into mouse tibia, the epithelial subline grows most aggressively, whereas the mesenchymal subline does not grow. In cultured cells, ZEB1 and Src family kinases decrease E-cadherin expression. In contrast, in tibial xenografts, E-cadherin RNA levels increase eight- to 10-fold despite persistent ZEB1 expression, and in all ZEB1-positive metastases (10 of 120), ZEB1 and E-cadherin proteins were co-expressed. These data suggest that transcriptional regulation of E-cadherin differs in cultured cells versus xenografts, which more faithfully reflect E-cadherin regulation in cancers in human beings. Furthermore, the aggressive nature of xenografts positive for E-cadherin and the frequency of metastases positive for E-cadherin suggest that high E-cadherin expression in metastatic prostate cancer is associated with aggressive tumor growth.


Assuntos
Neoplasias Ósseas/secundário , Caderinas/genética , Proteínas de Homeodomínio/metabolismo , Neoplasias da Próstata/patologia , Fatores de Transcrição/metabolismo , Neoplasias da Bexiga Urinária/secundário , Quinases da Família src/metabolismo , Animais , Apoptose , Western Blotting , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Transição Epitelial-Mesenquimal , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Humanos , Técnicas Imunoenzimáticas , Masculino , Camundongos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tíbia/patologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Quinases da Família src/genética
2.
Gynecol Oncol ; 116(1): 117-25, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19854497

RESUMO

OBJECTIVE: Our objective was to characterize the expression and function of the miR-200 family of microRNAs (miRNA) in ovarian carcinogenesis. METHODS: We used qRT-PCR to examine expression of the miR-200 miRNA family and its predicted targets, the ZEB1 and ZEB2 transcriptional repressors, in primary cultures of normal cells from the surface of the ovary and in a panel of 70 ovarian cancer tissues and 15 ovarian cancer cell lines. We studied the mechanisms of regulation of miR-200 miRNAs and ZEB transcription factors in ovarian cells using 3' UTR luciferase reporters, promoter luciferase reporters and siRNAs. RESULTS: miR-200 family members are expressed at low or negligible levels in normal ovarian surface cells and substantially increase in expression in ovarian cancer, whereas expression of ZEB1 and ZEB2 shows the opposite pattern. There is reciprocal repression between miR-200 family members and ZEB transcription factors, creating a double negative regulatory feedback loop resembling that reported in other cancer cell types. In contrast to epithelial cells from other sites, expression levels of miR-200 miRNAs and ZEB1/2 in cells from the ovarian surface are more consistent with a mesenchymal cell phenotype, potentially reflecting the mesothelial origin of the ovarian surface. CONCLUSION: Analysis of ovarian cancer tissues suggests that ovarian surface cells acquire a more epithelial miR-200-ZEB1/2 phenotype as they undergo transformation, switching from a miR-200 familyLOW and ZEB1/2HIGH state to a miR-200 familyHIGH and ZEB1/2LOW phenotype. Collectively, our data support the mesothelial-to-epithelial (Meso-E-T) model for development of ovarian cancers that arise from ovarian surface cells, as has been proposed previously on the basis of studies of protein markers.


Assuntos
Transformação Celular Neoplásica/genética , Proteínas de Homeodomínio/biossíntese , MicroRNAs/biossíntese , Neoplasias Ovarianas/genética , Proteínas Repressoras/biossíntese , Fatores de Transcrição/biossíntese , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Epiteliais/patologia , Epitélio/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , MicroRNAs/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco
3.
Appl Immunohistochem Mol Morphol ; 18(6): 499-508, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20661131

RESUMO

The primary objective of this study is to show the activation and analyze the regulation of the MEK- S6 kinase pathway in high-grade ovarian cancer. Phospho-ERK (pERK), a direct substrate of MEK and 2 phosphorylation sites on the ribosomal protein, S6, Ser235/236, and Ser240/244, which are both targeted by the MEK and PI3-kinase/AKT pathways, were analyzed in 13 cell lines, 28 primary cancers and 8 cases of cancer cells from ascites. In primary cancers, ERK and S6 phosphorylation was measured by immunohistochemistry (IHC). pERK, pS6, pAKT, and p4EBP1 were also measured by Western blotting (WB). The regulation of S6 phosphorylation by the MEK and PI3-kinase pathways was determined in ovarian cancer cell lines. We observed frequent pERK expression in primary ovarian cancers (100% by WB, 75% by IHC) but not in ovarian cancer cells from ascites (25% of cases by WB). The activation of the AKT pathway, measured by pAKT expression occurred in 7 cases of primary ovarian cancer by WB, but in none of the ascites samples. In ovarian cancer cell lines, the MEK pathway had a greater effect on S6 phosphorylation in cells without hyperactive AKT signaling. Our data suggest that MEK is a potential drug target in high-grade ovarian cancer, however, cancer cells with hyperactive AKT and cancer cells in ascites may be less responsive to MEK inhibition. The phosphorylation of S6 as a specific biomarker for either MEK or PI3-kinase pathway activation should be used with caution.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/análise , MAP Quinase Quinase Quinases/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Ovário/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ascite , Western Blotting , Linhagem Celular Tumoral , Feminino , Humanos , Imuno-Histoquímica , MAP Quinase Quinase Quinases/antagonistas & inibidores , Neoplasias Ovarianas/ultraestrutura , Ovário/fisiopatologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Valor Preditivo dos Testes , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas/antagonistas & inibidores , Regulação para Cima
4.
PLoS One ; 5(2): e9359, 2010 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-20179752

RESUMO

BACKGROUND: Epithelial ovarian carcinoma is a significant cause of cancer mortality in women worldwide and in the United States. Epithelial ovarian cancer comprises several histological subtypes, each with distinct clinical and molecular characteristics. The natural history of this heterogeneous disease, including the cell types of origin, is poorly understood. This study applied recently developed methods for high-throughput DNA methylation profiling to characterize ovarian cancer cell lines and tumors, including representatives of three major histologies. METHODOLOGY/PRINCIPAL FINDINGS: We obtained DNA methylation profiles of 1,505 CpG sites (808 genes) in 27 primary epithelial ovarian tumors and 15 ovarian cancer cell lines. We found that the DNA methylation profiles of ovarian cancer cell lines were markedly different from those of primary ovarian tumors. Aggregate DNA methylation levels of the assayed CpG sites tended to be higher in ovarian cancer cell lines relative to ovarian tumors. Within the primary tumors, those of the same histological type were more alike in their methylation profiles than those of different subtypes. Supervised analyses identified 90 CpG sites (68 genes) that exhibited 'subtype-specific' DNA methylation patterns (FDR<1%) among the tumors. In ovarian cancer cell lines, we estimated that for at least 27% of analyzed autosomal CpG sites, increases in methylation were accompanied by decreases in transcription of the associated gene. SIGNIFICANCE: The significant difference in DNA methylation profiles between ovarian cancer cell lines and tumors underscores the need to be cautious in using cell lines as tumor models for molecular studies of ovarian cancer and other cancers. Similarly, the distinct methylation profiles of the different histological types of ovarian tumors reinforces the need to treat the different histologies of ovarian cancer as different diseases, both clinically and in biomarker studies. These data provide a useful resource for future studies, including those of potential tumor progenitor cells, which may help illuminate the etiology and natural history of these cancers.


Assuntos
Ilhas de CpG/genética , Metilação de DNA , Neoplasias Ovarianas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Análise por Conglomerados , Células Epiteliais/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Ovarianas/patologia
5.
PLoS One ; 3(6): e2425, 2008 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-18560578

RESUMO

BACKGROUND: Elucidation of the repertoire of secreted and cell surface proteins of tumor cells is relevant to molecular diagnostics, tumor imaging and targeted therapies. We have characterized the cell surface proteome and the proteins released into the extra-cellular milieu of three ovarian cancer cell lines, CaOV3, OVCAR3 and ES2 and of ovarian tumor cells enriched from ascites fluid. METHODOLOGY AND FINDINGS: To differentiate proteins released into the media from protein constituents of media utilized for culture, cells were grown in the presence of [(13)C]-labeled lysine. A biotinylation-based approach was used to capture cell surface associated proteins. Our general experimental strategy consisted of fractionation of proteins from individual compartments followed by proteolytic digestion and LC-MS/MS analysis. In total, some 6,400 proteins were identified with high confidence across all specimens and fractions. CONCLUSIONS AND SIGNIFICANCE: Protein profiles of the cell lines had substantial similarity to the profiles of human ovarian cancer cells from ascites fluid and included protein markers known to be associated with ovarian cancer. Proteomic analysis indicated extensive shedding from extra-cellular domains of proteins expressed on the cell surface, and remarkably high secretion rates for some proteins (nanograms per million cells per hour). Cell surface and secreted proteins identified by in-depth proteomic profiling of ovarian cancer cells may provide new targets for diagnosis and therapy.


Assuntos
Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Proteômica , Linhagem Celular Tumoral , Cromatografia Líquida , Espaço Extracelular/metabolismo , Feminino , Humanos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA