Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 31(Pt 3): 578-589, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38530831

RESUMO

The beamline optics and endstations at branch B of the Versatile Soft X-ray (VerSoX) beamline B07 at Diamond Light Source are described. B07-B provides medium-flux X-rays in the range 45-2200 eV from a bending magnet source, giving access to local electronic structure for atoms of all elements from Li to Y. It has an endstation for high-throughput X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure (NEXAFS) measurements under ultrahigh-vacuum (UHV) conditions. B07-B has a second endstation dedicated to NEXAFS at pressures from UHV to ambient pressure (1 atm). The combination of these endstations permits studies of a wide range of interfaces and materials. The beamline and endstation designs are discussed in detail, as well as their performance and the commissioning process.

2.
Faraday Discuss ; 236(0): 191-204, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35510538

RESUMO

Photoelectron spectroscopy is a powerful characterisation tool for semiconductor surfaces and interfaces, providing in principle a correlation between the electronic band structure and surface chemistry along with quantitative parameters such as the electron affinity, interface potential, band bending and band offsets. However, measurements are often limited to ultrahigh vacuum and only the top few atomic layers are probed. The technique is seldom applied as an in situ probe of surface processing; information is usually provided before and after processing in a separate environment, leading to a reduction in reproducibility. Advances in instrumentation, in particular electron detection has enabled these limitations to be addressed, for example allowing measurement at near-ambient pressures and the in situ, real-time monitoring of surface processing and interface formation. A further limitation is the influence of the measurement method through irreversible chemical effects such as radiation damage during X-ray exposure and reversible physical effects such as the charging of low conductivity materials. For wide-gap semiconductors such as oxides and carbon-based materials, these effects can be compounded and severe. Here we show how real-time and near-ambient pressure photoelectron spectroscopy can be applied to identify and quantify these effects, using a gold alloy, gallium oxide and semiconducting diamond as examples. A small binding energy change due to thermal expansion is followed in real-time for the alloy while the two semiconductors show larger temperature-induced changes in binding energy that, although superficially similar, are identified as having different and multiple origins, related to surface oxygen bonding, surface band-bending and a room-temperature surface photovoltage. The latter affects the p-type diamond at temperatures up to 400 °C when exposed to X-ray, UV and synchrotron radiation and under UHV and 1 mbar of O2. Real-time monitoring and near-ambient pressure measurement with different excitation sources has been used to identify the mechanisms behind the observed changes in spectral parameters that are different for each of the three materials. Corrected binding energy values aid the completion of the energy band diagrams for these wide-gap semiconductors and provide protocols for surface processing to engineer key surface and interface parameters.

3.
Phys Chem Chem Phys ; 23(37): 20957-20973, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34545382

RESUMO

Ionic liquid (IL) valence electronic structure provides key descriptors for understanding and predicting IL properties. The ionisation energies of 60 ILs are measured and the most readily ionised valence state of each IL (the highest occupied molecular orbital, HOMO) is identified using a combination of X-ray photoelectron spectroscopy (XPS) and synchrotron resonant XPS. A structurally diverse range of cations and anions were studied. The cation gave rise to the HOMO for nine of the 60 ILs presented here, meaning it is energetically more favourable to remove an electron from the cation than the anion. The influence of the cation on the anion electronic structure (and vice versa) were established; the electrostatic effects are well understood and demonstrated to be consistently predictable. We used this knowledge to make predictions of both ionisation energy and HOMO identity for a further 516 ILs, providing a very valuable dataset for benchmarking electronic structure calculations and enabling the development of models linking experimental valence electronic structure descriptors to other IL properties, e.g. electrochemical stability. Furthermore, we provide design rules for the prediction of the electronic structure of ILs.

4.
J Synchrotron Radiat ; 27(Pt 5): 1153-1166, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876589

RESUMO

The ambient-pressure endstation and branchline of the Versatile Soft X-ray (VerSoX) beamline B07 at Diamond Light Source serves a very diverse user community studying heterogeneous catalysts, pharmaceuticals and biomaterials under realistic conditions, liquids and ices, and novel electronic, photonic and battery materials. The instrument facilitates studies of the near-surface chemical composition, electronic and geometric structure of a variety of samples using X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy in the photon energy range from 170 eV to 2800 eV. The beamline provides a resolving power hν/Δ(hν) > 5000 at a photon flux > 1010 photons s-1 over most of its energy range. By operating the optical elements in a low-pressure oxygen atmosphere, carbon contamination can be almost completely eliminated, which makes the beamline particularly suitable for carbon K-edge NEXAFS. The endstation can be operated at pressures up to 100 mbar, whereby XPS can be routinely performed up to 30 mbar. A selection of typical data demonstrates the capability of the instrument to analyse details of the surface composition of solid samples under ambient-pressure conditions using XPS and NEXAFS. In addition, it offers a convenient way of analysing the gas phase through X-ray absorption spectroscopy. Short XPS spectra can be measured at a time scale of tens of seconds. The shortest data acquisition times for NEXAFS are around 0.5 s per data point.

5.
Phys Chem Chem Phys ; 22(34): 18806-18814, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32242587

RESUMO

Methanol is a promising chemical for the safe and efficient storage of hydrogen, where methanol conversion reactions can generate a hydrogen-containing gas mixture. Understanding the chemical state of the catalyst over which these reactions occur and the interplay with the adsorbed species present is key to the design of improved catalysts and process conditions. Here we study polycrystalline Cu foils using ambient pressure X-ray spectroscopies to reveal the Cu oxidation state and identify the adsorbed species during partial oxidation (CH3OH + O2), steam reforming (CH3OH + H2O), and autothermal reforming (CH3OH + O2 + H2O) of methanol at 200 °C surface temperature and in the mbar pressure range. We find that the Cu surface remains highly metallic throughout partial oxidation and steam reforming reactions, even for oxygen-rich conditions. However, for autothermal reforming the Cu surface shows significant oxidation towards Cu2O. We rationalise this behaviour on the basis of the shift in equilibrium of the CH3OH* + O* ⇌ CH3O* + OH* reaction step caused by the addition of H2O.

6.
Phys Chem Chem Phys ; 22(34): 18788-18797, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32329490

RESUMO

Hydrotalcite-derived Ni and Fe-promoted hydrotalcite-derived Ni catalysts were found to outperform industrial catalysts in the CO2 methanation reaction, however the origin of the improved activity and selectivity of these catalysts is not clear. Here, we report a study of these systems by means of in situ X-ray photoelectron spectroscopy and near-edge X-ray absorption spectroscopy elucidating the chemical nature of the catalysts surface under reaction conditions and revealing the mechanism by which Fe promotes activity and selectivity towards methane. We show that the increase of the conversion leads to hydroxylation of the Ni surface following the formation of water during the reaction. This excessive Ni surface hydroxylation has however a detrimental effect as shown by a controlled study. A dominant metallic Ni surface exists in conditions of higher selectivity towards methane whereas if an increase of the Ni surface hydroxylation occurs, a higher selectivity towards carbon monoxide is observed. The electronic structure analysis of the Fe species under reaction conditions reveals the existence of predominantly Fe(iii) species at the surface, whereas a mixture of Fe(ii)/Fe(iii) species is present underneath the surface when selectivity to methane is high. Our results highlight that Fe(ii) exerts a beneficial effect on maintaining Ni in a metallic state, whereas the extension of the Fe oxidation is accompanied by a more extended Ni surface hydroxylation with a negative impact on the selectivity towards methane.

7.
Phys Chem Chem Phys ; 22(34): 18774-18787, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32602489

RESUMO

The use of mechanochemistry to prepare catalytic materials is of significant interest; it offers an environmentally beneficial, solvent-free, route and produces highly complex structures of mixed amorphous and crystalline phases. This study reports on the effect of milling atmosphere, either air or argon, on mechanochemically prepared LaMnO3 and the catalytic performance towards N2O decomposition (deN2O). In this work, high energy resolution fluorescence detection (HERFD), X-ray absorption near edge structure (XANES), X-ray emission, and X-ray photoelectron spectroscopy (XPS) have been used to probe the electronic structural properties of the mechanochemically prepared materials. Moreover, in situ studies using near ambient pressure (NAP)-XPS, to follow the materials during catalysis, and high pressure energy dispersive EXAFS studies, to mimic the preparation conditions, have also been performed. The studies show that there are clear differences between the air and argon milled samples, with the most pronounced changes observed using NAP-XPS. The XPS results find increased levels of active adsorbed oxygen species, linked to the presence of surface oxide vacancies, for the sample prepared in argon. Furthermore, the argon milled LaMnO3 shows improved catalytic activity towards deN2O at lower temperatures compared to the air milled and sol-gel synthesised LaMnO3. Assessing this improved catalytic behaviour during deN2O of argon milled LaMnO3 by in situ NAP-XPS suggests increased interaction of N2O at room temperature within the O 1s region. This study further demonstrates the complexity of mechanochemically prepared materials and through careful choice of characterisation methods how their properties can be understood.

8.
Chem Sci ; 13(20): 6089-6097, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35685800

RESUMO

Conductometric gas sensors (CGS) provide a reproducible gas response at a low cost but their operation mechanisms are still not fully understood. In this paper, we elucidate the nature of interactions between SnO2, a common gas-sensitive material, and O2, a ubiquitous gas central to the detection mechanisms of CGS. Using synchrotron radiation, we investigated a working SnO2 sensor under operando conditions via near-ambient pressure (NAP) XPS with simultaneous resistance measurements, and created a depth profile of the variable near-surface stoichiometry of SnO2-x as a function of O2 pressure. Our results reveal a correlation between the dynamically changing surface oxygen vacancies and the resistance response in SnO2-based CGS. While oxygen adsorbates were observed in this study we conclude that these are an intermediary in oxygen transport between the gas phase and the lattice, and that surface oxygen vacancies, not the observed oxygen adsorbates, are central to response generation in SnO2-based gas sensors.

9.
J Synchrotron Radiat ; 18(Pt 2): 251-6, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21335913

RESUMO

A cell for the investigation of interfaces under pressure is presented. Given the pressure and temperature specifications of the cell, P ≤ 100 bar and 253 K ≤ T ≤ 323 K, respectively, high-energy X-rays are required to penetrate the thick Al(2)O(3) windows. The CH(4)(gas)/H(2)O(liquid) interface has been chosen to test the performance of the new device. The measured dynamic range of the high-energy X-ray reflectivity data exceeds 10(-8), thereby demonstrating the validity of the entire experimental set-up.

10.
J Am Chem Soc ; 131(2): 585-9, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19105749

RESUMO

The structure of the carbon dioxide-water interface was analyzed by X-ray diffraction and reflectivity at temperature and pressure conditions which allow the formation of gas hydrate. The water-gaseous CO2 and the water-liquid CO2 interface were examined. The two interfaces show a very different behavior with respect to the formation of gas hydrate. While the liquid-gas interface exhibits the formation of thin liquid CO2 layers on the water surface, the formation of small clusters of gas hydrate was observed at the liquid-liquid interface. The data obtained from both interfaces points to a gas hydrate formation process which may be explained by the so-called local structuring hypothesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA