Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 18(11): e3000940, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253165

RESUMO

It is unknown how growth in one tissue impacts morphogenesis in a neighboring tissue. To address this, we used the Drosophila ovarian follicle, in which a cluster of 15 nurse cells and a posteriorly located oocyte are surrounded by a layer of epithelial cells. It is known that as the nurse cells grow, the overlying epithelial cells flatten in a wave that begins in the anterior. Here, we demonstrate that an anterior to posterior gradient of decreasing cytoplasmic pressure is present across the nurse cells and that this gradient acts through TGFß to control both the triggering and the progression of the wave of epithelial cell flattening. Our data indicate that intrinsic nurse cell growth is important to control proper nurse cell pressure. Finally, we reveal that nurse cell pressure and subsequent TGFß activity in the stretched cells combine to increase follicle elongation in the anterior, which is crucial for allowing nurse cell growth and pressure control. More generally, our results reveal that during development, inner cytoplasmic pressure in individual cells has an important role in shaping their neighbors.


Assuntos
Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Animais , Fenômenos Biomecânicos , Diferenciação Celular , Polaridade Celular , Forma Celular , Citoplasma/metabolismo , Proteínas de Drosophila/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Microscopia de Força Atômica , Modelos Biológicos , Oócitos/citologia , Oócitos/metabolismo , Oogênese , Pressão , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
2.
Chembiochem ; 23(4): e202100640, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34932835

RESUMO

A genetic assay permits simultaneous quantification of two interacting proteins and their bound fraction at the single-cell level using flow cytometry. Apparent in-cellula affinities of protein-protein interactions can be extracted from the acquired data through a titration-like analysis. The applicability of this approach is demonstrated on a diverse set of interactions with proteins from different families and organisms and with in-vitro dissociation constants ranging from picomolar to micromolar.


Assuntos
Proteínas/química , Citometria de Fluxo , Humanos , Ligação Proteica , Análise de Célula Única
3.
Mol Cell Proteomics ; 19(4): 701-715, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32015065

RESUMO

We present a technological advancement for the estimation of the affinities of Protein-Protein Interactions (PPIs) in living cells. A novel set of vectors is introduced that enables a quantitative yeast two-hybrid system based on fluorescent fusion proteins. The vectors allow simultaneous quantification of the reaction partners (Bait and Prey) and the reporter at the single-cell level by flow cytometry. We validate the applicability of this system on a small but diverse set of PPIs (eleven protein families from six organisms) with different affinities; the dissociation constants range from 117 pm to 17 µm After only two hours of reaction, expression of the reporter can be detected even for the weakest PPI. Through a simple gating analysis, it is possible to select only cells with identical expression levels of the reaction partners. As a result of this standardization of expression levels, the mean reporter levels directly reflect the affinities of the studied PPIs. With a set of PPIs with known affinities, it is straightforward to construct an affinity ladder that permits rapid classification of PPIs with thus far unknown affinities. Conventional software can be used for this analysis. To permit automated analysis, we provide a graphical user interface for the Python-based FlowCytometryTools package.


Assuntos
Citometria de Fluxo , Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Fluorescência , Genes Reporter , Peroxinas/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteoma/metabolismo , Padrões de Referência , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Célula Única
4.
Trends Cell Biol ; 32(11): 947-961, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35577671

RESUMO

Engineering and computational advances have opened many new avenues in cancer research, particularly when being exploited in interdisciplinary approaches. For example, the combination of microfluidics, novel sequencing technologies, and computational analyses has been crucial to enable single-cell assays, giving a detailed picture of tumor heterogeneity for the very first time. In a similar way, these 'tech' disciplines have been elementary for generating large data sets in multidimensional cancer 'omics' approaches, cell-cell interaction screens, 3D tumor models, and tissue level analyses. In this review we summarize the most important technology and computational developments that have been or will be instrumental for transitioning classical cancer research to a large data-driven, high-throughput, high-content discipline across all biological scales.


Assuntos
Neoplasias , Biologia Computacional/métodos , Humanos , Neoplasias/genética , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA