Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Plant Cell Environ ; 47(4): 1099-1117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38038355

RESUMO

Many plants, especially trees, emit isoprene in a highly light- and temperature-dependent manner. The advantages for plants that emit, if any, have been difficult to determine. Direct effects on membranes have been disproven. New insights have been obtained by RNA sequencing, proteomic and metabolomic studies. We determined the responses of the phosphoproteome to exposure of Arabidopsis leaves to isoprene in the gas phase for either 1 or 5 h. Isoprene effects that were not apparent from RNA sequencing and other methods but were apparent in the phosphoproteome include effects on chloroplast movement proteins and membrane remodelling proteins. Several receptor kinases were found to have altered phosphorylation levels. To test whether potential isoprene receptors could be identified, we used molecular dynamics simulations to test for proteins that might have strong binding to isoprene and, therefore might act as receptors. Although many Arabidopsis proteins were found to have slightly higher binding affinities than a reference set of Homo sapiens proteins, no specific receptor kinase was found to have a very high binding affinity. The changes in chloroplast movement, photosynthesis capacity and so forth, found in this work, are consistent with isoprene responses being especially useful in the upper canopy of trees.


Assuntos
Fotossíntese , Proteômica , Hemiterpenos/metabolismo , Butadienos/metabolismo , Árvores/metabolismo , Pentanos/metabolismo , Folhas de Planta/metabolismo
2.
Biomacromolecules ; 25(2): 767-777, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38157547

RESUMO

Understanding the physics of lignin will help rationalize its function in plant cell walls as well as aiding practical applications such as deriving biofuels and bioproducts. Here, we present SPRIG (Simple Polydisperse Residue Input Generator), a program for generating atomic-detail models of random polydisperse lignin copolymer melts i.e., the state most commonly found in nature. Using these models, we use all-atom molecular dynamics (MD) simulations to investigate the conformational and dynamic properties of polydisperse melts representative of switchgrass (Panicum virgatum L.) lignin. Polydispersity, branching and monolignol sequence are found to not affect the calculated glass transition temperature, Tg. The Flory-Huggins scaling parameter for the segmental radius of gyration is 0.42 ± 0.02, indicating that the chains exhibit statistics that lie between a globular chain and an ideal Gaussian chain. Below Tg the atomic mean squared displacements are independent of molecular weight. In contrast, above Tg, they decrease with increasing molecular weight. Therefore, a monodisperse lignin melt is a good approximation to this polydisperse lignin when only static properties are probed, whereas the molecular weight distribution needs to be considered while analyzing lignin dynamics.


Assuntos
Lignina , Lignina/química , Plantas Geneticamente Modificadas , Temperatura de Transição
3.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38341797

RESUMO

Diffusion of electrons over distances on the order of 100 µm has been observed in crystals of a small tetraheme cytochrome (STC) from Shewanella oneidensis [J. Huang et al. J. Am. Chem. Soc. 142, 10459-10467 (2020)]. Electron transfer between hemes in adjacent subunits of the crystal is slower and more strongly dependent on temperature than had been expected based on semiclassical electron-transfer theory. We here explore explanations for these findings by molecular-dynamics simulations of crystalline and monomeric STC. New procedures are developed for including time-dependent quantum mechanical energy differences in the gap between the energies of the reactant and product states and for evaluating fluctuations of the electronic-interaction matrix element that couples the two hemes. Rate constants for electron transfer are calculated from the time- and temperature-dependent energy gaps, coupling factors, and Franck-Condon-weighted densities of states using an expression with no freely adjustable parameters. Back reactions are considered, as are the effects of various protonation states of the carboxyl groups on the heme side chains. Interactions with water are found to dominate the fluctuations of the energy gap between the reactant and product states. The calculated rate constant for electron transfer from heme IV to heme Ib in a neighboring subunit at 300 K agrees well with the measured value. However, the calculated activation energy of the reaction in the crystal is considerably smaller than observed. We suggest two possible explanations for this discrepancy. The calculated rate constant for transfer from heme I to II within the same subunit of the crystal is about one-third that for monomeric STC in solution.


Assuntos
Citocromos , Elétrons , Transporte de Elétrons , Citocromos/química , Citocromos/metabolismo , Simulação de Dinâmica Molecular , Heme/química , Oxirredução
4.
J Biol Chem ; 298(12): 102627, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273587

RESUMO

Lignin, an abundant aromatic heteropolymer in secondary plant cell walls, is the single largest source of renewable aromatics in the biosphere. Leveraging this resource for renewable bioproducts through targeted microbial action depends on lignin fragment uptake by microbial hosts and subsequent enzymatic action to obtain the desired product. Recent computational work has emphasized that bacterial inner membranes are permeable to many aromatic compounds expected from lignin depolymerization processes. In this study, we expand on these findings through simulations for 42 lignin-related compounds across a gram-negative bacterial outer membrane model. Unbiased simulation trajectories indicate that spontaneous crossing for the full outer membrane is relatively rare at molecular simulation timescales, primarily due to preferential membrane partitioning and slow diffusion within the lipopolysaccharide layer within the outer membrane. Membrane partitioning and permeability coefficients were determined through replica exchange umbrella sampling simulations to overcome sampling limitations. We find that the glycosylated lipopolysaccharides found in the outer membrane increase the permeation barrier to many lignin-related compounds, particularly the most hydrophobic compounds. However, the effect is relatively modest; at industrially relevant concentrations, uncharged lignin-related compounds will readily diffuse across the outer membrane without the need for specific porins. Together, our results provide insight into the permeability of the bacterial outer membrane for assessing lignin fragment uptake and the future production of renewable bioproducts.


Assuntos
Membrana Externa Bacteriana , Lignina , Membrana Externa Bacteriana/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Difusão , Lignina/metabolismo , Simulação de Dinâmica Molecular , Bactérias Gram-Negativas
5.
Small ; 19(52): e2304013, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37653599

RESUMO

The ability to redirect electron transport to new reactions in living systems opens possibilities to store energy, generate new products, or probe physiological processes. Recent work by Huang et al. showed that 3D crystals of small tetraheme cytochromes (STC) can transport electrons over nanoscopic to mesoscopic distances by an electron hopping mechanism, making them promising materials for nanowires. However, fluctuations at room temperature may distort the nanostructure, hindering efficient electron transport. Classical molecular dynamics simulations of these fluctuations at the nano- and mesoscopic scales allowed us to develop a graph network representation to estimate maximum electron flow that can be driven through STC wires. In longer nanowires, transient structural fluctuations at protein-protein interfaces tended to obstruct efficient electron transfer, but these blockages are ameliorated in thicker crystals where alternative electron transfer pathways become more efficient. The model implies that more flexible proteinprotein interfaces limit the required minimum diameter to carry currents commensurate with conventional electronics.


Assuntos
Nanofios , Transporte de Elétrons , Citocromos/química , Citocromos/metabolismo , Simulação de Dinâmica Molecular , Proteínas/metabolismo
6.
Plant Cell Environ ; 46(8): 2419-2431, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37212244

RESUMO

The thylakoid membrane is in a temperature-sensitive equilibrium that shifts repeatedly during the life cycle in response to ambient temperature or solar irradiance. Plants respond to seasonal temperature variation by changing their thylakoid lipid composition, while a more rapid mechanism for short-term heat exposure is required. The emission of the small organic molecule isoprene has been postulated as one such possible rapid mechanism. The protective mechanism of isoprene is unknown, but some plants emit isoprene at high temperature. We investigate the dynamics and structure for lipids within a thylakoid membrane across temperatures and varied isoprene content using classical molecular dynamics simulations. The results are compared with experimental findings for temperature-dependent changes in the lipid composition and shape of thylakoids. The surface area, volume, and flexibility of the membrane, as well as the lipid diffusion, increase with temperature, while the membrane thickness decreases. Saturated thylakoid 34:3 glycolipids derived from eukaryotic synthesis pathways exhibit altered dynamics relative to lipids from prokaryotic synthesis paths, which could explain the upregulation of specific lipid synthesis pathways at different temperatures. Increasing isoprene concentration was not observed to have a significant thermoprotective effect on the thylakoid membranes, and that isoprene readily permeated the membrane models tested.


Assuntos
Temperatura Alta , Tilacoides , Tilacoides/metabolismo , Temperatura , Plantas , Glicolipídeos/metabolismo
7.
J Chem Inf Model ; 63(18): 5834-5846, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37661856

RESUMO

Recent advances in cryo-electron microscopy (cryo-EM) have enabled modeling macromolecular complexes that are essential components of the cellular machinery. The density maps derived from cryo-EM experiments are often integrated with manual, knowledge-driven or artificial intelligence-driven and physics-guided computational methods to build, fit, and refine molecular structures. Going beyond a single stationary-structure determination scheme, it is becoming more common to interpret the experimental data with an ensemble of models that contributes to an average observation. Hence, there is a need to decide on the quality of an ensemble of protein structures on-the-fly while refining them against the density maps. We introduce such an adaptive decision-making scheme during the molecular dynamics flexible fitting (MDFF) of biomolecules. Using RADICAL-Cybertools, the new RADICAL augmented MDFF implementation (R-MDFF) is examined in high-performance computing environments for refinement of two prototypical protein systems, adenylate kinase and carbon monoxide dehydrogenase. For these test cases, use of multiple replicas in flexible fitting with adaptive decision making in R-MDFF improves the overall correlation to the density by 40% relative to the refinements of the brute-force MDFF. The improvements are particularly significant at high, 2-3 Å map resolutions. More importantly, the ensemble model captures key features of biologically relevant molecular dynamics that are inaccessible to a single-model interpretation. Finally, the pipeline is applicable to systems of growing sizes, which is demonstrated using ensemble refinement of capsid proteins from the chimpanzee adenovirus. The overhead for decision making remains low and robust to computing environments. The software is publicly available on GitHub and includes a short user guide to install R-MDFF on different computing environments, from local Linux-based workstations to high-performance computing environments.


Assuntos
Inteligência Artificial , Simulação de Dinâmica Molecular , Microscopia Crioeletrônica , Microscopia Eletrônica , Adenilato Quinase
8.
Biochem Soc Trans ; 50(1): 569-581, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35212361

RESUMO

Single particle analysis cryo-electron microscopy (EM) and molecular dynamics (MD) have been complimentary methods since cryo-EM was first applied to the field of structural biology. The relationship started by biasing structural models to fit low-resolution cryo-EM maps of large macromolecular complexes not amenable to crystallization. The connection between cryo-EM and MD evolved as cryo-EM maps improved in resolution, allowing advanced sampling algorithms to simultaneously refine backbone and sidechains. Moving beyond a single static snapshot, modern inferencing approaches integrate cryo-EM and MD to generate structural ensembles from cryo-EM map data or directly from the particle images themselves. We summarize the recent history of MD innovations in the area of cryo-EM modeling. The merits for the myriad of MD based cryo-EM modeling methods are discussed, as well as, the discoveries that were made possible by the integration of molecular modeling with cryo-EM. Lastly, current challenges and potential opportunities are reviewed.


Assuntos
Algoritmos , Simulação de Dinâmica Molecular , Microscopia Crioeletrônica/métodos , Substâncias Macromoleculares , Imagem Individual de Molécula
9.
J Chem Inf Model ; 62(3): 602-617, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-34910495

RESUMO

The march toward exascale computing will enable routine molecular simulation of larger and more complex systems, for example, simulation of entire viral particles, on the scale of approximately billions of atoms─a simulation size commensurate with a small bacterial cell. Anticipating the future hardware capabilities that will enable this type of research and paralleling advances in experimental structural biology, efforts are currently underway to develop software tools, procedures, and workflows for constructing cell-scale structures. Herein, we describe our efforts in developing and implementing an efficient and robust workflow for construction of cell-scale membrane envelopes and embedding membrane proteins into them. A new approach for construction of massive membrane structures that are stable during the simulations is built on implementing a subtractive assembly technique coupled with the development of a structure concatenation tool (fastmerge), which eliminates overlapping elements based on volumetric criteria rather than adding successive molecules to the simulation system. Using this approach, we have constructed two "protocells" consisting of MARTINI coarse-grained beads to represent cellular membranes, one the size of a cellular organelle and another the size of a small bacterial cell. The membrane envelopes constructed here remain whole during the molecular dynamics simulations performed and exhibit water flux only through specific proteins, demonstrating the success of our methodology in creating tight cell-like membrane compartments. Extended simulations of these cell-scale structures highlight the propensity for nonspecific interactions between adjacent membrane proteins leading to the formation of protein microclusters on the cell surface, an insight uniquely enabled by the scale of the simulations. We anticipate that the experiences and best practices presented here will form the basis for the next generation of cell-scale models, which will begin to address the addition of soluble proteins, nucleic acids, and small molecules essential to the function of a cell.


Assuntos
Proteínas de Membrana , Simulação de Dinâmica Molecular , Membrana Celular/metabolismo , Proteínas de Membrana/química , Software , Água/química
10.
Proc Natl Acad Sci U S A ; 116(46): 23061-23067, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31666327

RESUMO

Cellulase enzymes deconstruct recalcitrant cellulose into soluble sugars, making them a biocatalyst of biotechnological interest for use in the nascent lignocellulosic bioeconomy. Cellobiohydrolases (CBHs) are cellulases capable of liberating many sugar molecules in a processive manner without dissociating from the substrate. Within the complete processive cycle of CBHs, dissociation from the cellulose substrate is rate limiting, but the molecular mechanism of this step is unknown. Here, we present a direct comparison of potential molecular mechanisms for dissociation via Hamiltonian replica exchange molecular dynamics of the model fungal CBH, Trichoderma reesei Cel7A. Computational rate estimates indicate that stepwise cellulose dethreading from the binding tunnel is 4 orders of magnitude faster than a clamshell mechanism, in which the substrate-enclosing loops open and release the substrate without reversing. We also present the crystal structure of a disulfide variant that covalently links substrate-enclosing loops on either side of the substrate-binding tunnel, which constitutes a CBH that can only dissociate via stepwise dethreading. Biochemical measurements indicate that this variant has a dissociation rate constant essentially equivalent to the wild type, implying that dethreading is likely the predominant mechanism for dissociation.


Assuntos
Celulases/química , Proteínas Fúngicas/química , Trichoderma/enzimologia , Sítios de Ligação , Domínio Catalítico , Celulases/metabolismo , Celulose/química , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Cinética , Simulação de Dinâmica Molecular , Trichoderma/química
11.
Proc Natl Acad Sci U S A ; 116(46): 23117-23123, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659054

RESUMO

Lignin is an abundant aromatic polymer found in plant secondary cell walls. In recent years, lignin has attracted renewed interest as a feedstock for bio-based chemicals via catalytic and biological approaches and has emerged as a target for genetic engineering to improve lignocellulose digestibility by altering its composition. In lignin biosynthesis and microbial conversion, small phenolic lignin precursors or degradation products cross membrane bilayers through an unidentified translocation mechanism prior to incorporation into lignin polymers (synthesis) or catabolism (bioconversion), with both passive and transporter-assisted mechanisms postulated. To test the passive permeation potential of these phenolics, we performed molecular dynamics simulations for 69 monomeric and dimeric lignin-related phenolics with 3 model membranes to determine the membrane partitioning and permeability coefficients for each compound. The results support an accessible passive permeation mechanism for most compounds, including monolignols, dimeric phenolics, and the flavonoid, tricin. Computed lignin partition coefficients are consistent with concentration enrichment near lipid carbonyl groups, and permeability coefficients are sufficient to keep pace with cellular metabolism. Interactions between methoxy and hydroxy groups are found to reduce membrane partitioning and improve permeability. Only carboxylate-modified or glycosylated lignin phenolics are predicted to require transporters for membrane translocation. Overall, the results suggest that most lignin-related compounds can passively traverse plant and microbial membranes on timescales commensurate with required biological activities, with any potential transport regulation mechanism in lignin synthesis, catabolism, or bioconversion requiring compound functionalization.


Assuntos
Membrana Celular/metabolismo , Lignina/metabolismo , Difusão , Simulação de Dinâmica Molecular
12.
Proc Natl Acad Sci U S A ; 115(32): E7502-E7511, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30026196

RESUMO

EmrE is a small, homodimeric membrane transporter that exploits the established electrochemical proton gradient across the Escherichia coli inner membrane to export toxic polyaromatic cations, prototypical of the wider small-multidrug resistance transporter family. While prior studies have established many fundamental aspects of the specificity and rate of substrate transport in EmrE, low resolution of available structures has hampered identification of the transport coupling mechanism. Here we present a complete, refined atomic structure of EmrE optimized against available cryo-electron microscopy (cryo-EM) data to delineate the critical interactions by which EmrE regulates its conformation during the transport process. With the model, we conduct molecular dynamics simulations of the transporter in explicit membranes to probe EmrE dynamics under different substrate loading and conformational states, representing different intermediates in the transport cycle. The refined model is stable under extended simulation. The water dynamics in simulation indicate that the hydrogen-bonding networks around a pair of solvent-exposed glutamate residues (E14) depend on the loading state of EmrE. One specific hydrogen bond from a tyrosine (Y60) on one monomer to a glutamate (E14) on the opposite monomer is especially critical, as it locks the protein conformation when the glutamate is deprotonated. The hydrogen bond provided by Y60 lowers the [Formula: see text] of one glutamate relative to the other, suggesting both glutamates should be protonated for the hydrogen bond to break and a substrate-free transition to take place. These findings establish the molecular mechanism for the coupling between proton transfer reactions and protein conformation in this proton-coupled secondary transporter.


Assuntos
Antiporters/metabolismo , Farmacorresistência Bacteriana Múltipla , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Ácido Glutâmico/metabolismo , Antiporters/química , Transporte Biológico , Microscopia Crioeletrônica , Proteínas de Escherichia coli/química , Ácido Glutâmico/química , Ligação de Hidrogênio , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Prótons , Eletricidade Estática
13.
J Chem Phys ; 153(21): 214102, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33291927

RESUMO

Driving molecular dynamics simulations with data-guided collective variables offer a promising strategy to recover thermodynamic information from structure-centric experiments. Here, the three-dimensional electron density of a protein, as it would be determined by cryo-EM or x-ray crystallography, is used to achieve simultaneously free-energy costs of conformational transitions and refined atomic structures. Unlike previous density-driven molecular dynamics methodologies that determine only the best map-model fits, our work employs the recently developed Multi-Map methodology to monitor concerted movements within equilibrium, non-equilibrium, and enhanced sampling simulations. Construction of all-atom ensembles along the chosen values of the Multi-Map variable enables simultaneous estimation of average properties, as well as real-space refinement of the structures contributing to such averages. Using three proteins of increasing size, we demonstrate that biased simulation along the reaction coordinates derived from electron densities can capture conformational transitions between known intermediates. The simulated pathways appear reversible with minimal hysteresis and require only low-resolution density information to guide the transition. The induced transitions also produce estimates for free energy differences that can be directly compared to experimental observables and population distributions. The refined model quality is superior compared to those found in the Protein Data Bank. We find that the best quantitative agreement with experimental free-energy differences is obtained using medium resolution density information coupled to comparatively large structural transitions. Practical considerations for probing the transitions between multiple intermediate density states are also discussed.


Assuntos
Microscopia Crioeletrônica/métodos , Modelos Químicos , Proteínas/química , Adenilato Quinase/química , Aldeído Oxirredutases/química , Lipoproteínas/química , Simulação de Dinâmica Molecular , Complexos Multienzimáticos/química , Conformação Proteica , Termodinâmica
14.
Appl Environ Microbiol ; 85(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30552196

RESUMO

Cellulases from glycoside hydrolase family 5 (GH5) are key endoglucanase enzymes in the degradation of diverse polysaccharide substrates and are used in industrial enzyme cocktails to break down biomass. The GH5 family shares a canonical (ßα)8-barrel structure, where each (ßα) module is essential for the enzyme's stability and activity. Despite their shared topology, the thermostability of GH5 endoglucanase enzymes can vary significantly, and highly thermostable variants are often sought for industrial applications. Based on the previously characterized thermophilic GH5 endoglucanase Egl5A from Talaromyces emersonii (TeEgl5A), which has an optimal temperature of 90°C, we created 10 hybrid enzymes with elements of the mesophilic endoglucanase Cel5 from Stegonsporium opalus (SoCel5) to determine which elements are responsible for enhanced thermostability. Five of the expressed hybrid enzymes exhibit enzyme activity. Two of these hybrids exhibited pronounced increases in the temperature optimum (10 and 20°C), the temperature at which the protein lost 50% of its activity (T50) (15 and 19°C), and the melting temperature (Tm ) (16.5 and 22.9°C) and extended half-lives (t1/2) (∼240- and 650-fold at 55°C) relative to the values for the mesophilic parent enzyme and demonstrated improved catalytic efficiency on selected substrates. The successful hybridization strategies were validated experimentally in another GH5 endoglucanase, Cel5 from Aspergillus niger (AnCel5), which demonstrated a similar increase in thermostability. Based on molecular dynamics (MD) simulations of both the SoCel5 and TeEgl5A parent enzymes and their hybrids, we hypothesize that improved hydrophobic packing of the interface between α2 and α3 is the primary mechanism by which the hybrid enzymes increase their thermostability relative to that of the mesophilic parent SoCel5.IMPORTANCE Thermal stability is an essential property of enzymes in many industrial biotechnological applications, as high temperatures improve bioreactor throughput. Many protein engineering approaches, such as rational design and directed evolution, have been employed to improve the thermal properties of mesophilic enzymes. Structure-based recombination has also been used to fuse TIM barrel fragments, and even fragments from unrelated folds, to generate new structures. However, little research has been done on GH5 endoglucanases. In this study, two GH5 endoglucanases exhibiting TIM barrel structure, SoCel5 and TeEgl5A, with different thermal properties, were hybridized to study the roles of different (ßα) motifs. This work illustrates the role that structure-guided recombination can play in helping to identify sequence function relationships within GH5 enzymes by supplementing natural diversity with synthetic diversity.


Assuntos
Celulase/química , Celulase/genética , Celulase/metabolismo , Quimera , Proteínas Fúngicas/genética , Temperatura Alta , Sequência de Aminoácidos , Ascomicetos/enzimologia , Ascomicetos/genética , Aspergillus niger/enzimologia , Aspergillus niger/genética , Clonagem Molecular , Estabilidade Enzimática , Proteínas Fúngicas/metabolismo , Regulação Enzimológica da Expressão Gênica , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Engenharia de Proteínas , Talaromyces/enzimologia , Talaromyces/genética
15.
Biochemistry ; 56(1): 281-293, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-27997124

RESUMO

Synaptotagmin (Syt) is a membrane-associated protein involved in vesicle fusion through the SNARE complex that is found throughout the human body in 17 different isoforms. These isoforms have two membrane-binding C2 domains, which sense Ca2+ and thereby promote anionic membrane binding and lead to vesicle fusion. Through molecular dynamics simulations using the highly mobile membrane mimetic acclerated bilayer model, we have investigated how small protein sequence changes in the Ca2+-binding loops of the C2 domains may give rise to the experimentally determined difference in binding kinetics between Syt-1 and Syt-7 isoforms. Syt-7 C2 domains are found to form more close contacts with anionic phospholipid headgroups, particularly in loop 1, where an additional positive charge in Syt-7 draws the loop closer to the membrane and causes the anchoring residue F167 to insert deeper into the bilayer than the corresponding methionine in Syt-1 (M173). By performing additional replica exchange umbrella sampling calculations, we demonstrate that these additional contacts increase the energetic cost of unbinding the Syt-7 C2 domains from the bilayer, causing them to unbind more slowly than their counterparts in Syt-1.


Assuntos
Membrana Celular/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , Sinaptotagminas/química , Sinaptotagminas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Cálcio/química , Cálcio/metabolismo , Simulação por Computador , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Homologia de Sequência de Aminoácidos , Sinaptotagmina I/química , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Sinaptotagminas/genética
16.
Biochim Biophys Acta ; 1858(7 Pt B): 1573-83, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26940626

RESUMO

Peripheral membrane proteins are structurally diverse proteins that are involved in fundamental cellular processes. Their activity of these proteins is frequently modulated through their interaction with cellular membranes, and as a result techniques to study the interfacial interaction between peripheral proteins and the membrane are in high demand. Due to the fluid nature of the membrane and the reversibility of protein-membrane interactions, the experimental study of these systems remains a challenging task. Molecular dynamics simulations offer a suitable approach to study protein-lipid interactions; however, the slow dynamics of the lipids often prevents sufficient sampling of specific membrane-protein interactions in atomistic simulations. To increase lipid dynamics while preserving the atomistic detail of protein-lipid interactions, in the highly mobile membrane-mimetic (HMMM) model the membrane core is replaced by an organic solvent, while short-tailed lipids provide a nearly complete representation of natural lipids at the organic solvent/water interface. Here, we present a brief introduction and a summary of recent applications of the HMMM to study different membrane proteins, complementing the experimental characterization of the presented systems, and we offer a perspective of future applications of the HMMM to study other classes of membrane proteins. This article is part of a Special Issue entitled: Membrane proteins edited by J.C. Gumbart and Sergei Noskov.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Modelos Químicos , Modelos Moleculares , Sítios de Ligação , Simulação por Computador , Fluidez de Membrana , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas/métodos
17.
Biochim Biophys Acta ; 1858(10): 2290-2304, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27163493

RESUMO

The cellular membrane constitutes the first element that encounters a wide variety of molecular species to which a cell might be exposed. Hosting a large number of structurally and functionally diverse proteins associated with this key metabolic compartment, the membrane not only directly controls the traffic of various molecules in and out of the cell, it also participates in such diverse and important processes as signal transduction and chemical processing of incoming molecular species. In this article, we present a number of cases where details of interaction of small molecular species such as drugs with the membrane, which are often experimentally inaccessible, have been studied using advanced molecular simulation techniques. We have selected systems in which partitioning of the small molecule with the membrane constitutes a key step for its final biological function, often binding to and interacting with a protein associated with the membrane. These examples demonstrate that membrane partitioning is not only important for the overall distribution of drugs and other small molecules into different compartments of the body, it may also play a key role in determining the efficiency and the mode of interaction of the drug with its target protein. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.


Assuntos
Membrana Celular/química , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Anestésicos/farmacocinética , Anestésicos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Citocromo P-450 CYP3A/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oxigênio/metabolismo , Esteroides/farmacocinética
18.
Biochemistry ; 55(40): 5714-5725, 2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27622672

RESUMO

The respiratory cytochrome bo3 ubiquinol oxidase from Escherichia coli has a high-affinity ubiquinone binding site that stabilizes the one-electron reduced ubisemiquinone (SQH), which is a transient intermediate during the electron-mediated reduction of O2 to water. It is known that SQH is stabilized by two strong hydrogen bonds from R71 and D75 to ubiquinone carbonyl oxygen O1 and weak hydrogen bonds from H98 and Q101 to O4. In this work, SQH was investigated with orientation-selective Q-band (∼34 GHz) pulsed 1H electron-nuclear double resonance (ENDOR) spectroscopy on fully deuterated cytochrome (cyt) bo3 in a H2O solvent so that only exchangeable protons contribute to the observed ENDOR spectra. Simulations of the experimental ENDOR spectra provided the principal values and directions of the hyperfine (hfi) tensors for the two strongly coupled H-bond protons (H1 and H2). For H1, the largest principal component of the proton anisotropic hfi tensor Tz' = 11.8 MHz, whereas for H2, Tz' = 8.6 MHz. Remarkably, the data show that the direction of the H1 H-bond is nearly perpendicular to the quinone plane (∼70° out of plane). The orientation of the second strong hydrogen bond, H2, is out of plane by ∼25°. Equilibrium molecular dynamics simulations on a membrane-embedded model of the cyt bo3 QH site show that these H-bond orientations are plausible but do not distinguish which H-bond, from R71 or D75, is nearly perpendicular to the quinone ring. Density functional theory calculations support the idea that the distances and geometries of the H-bonds to the ubiquinone carbonyl oxygens, along with the measured proton anisotropic hfi couplings, are most compatible with an anionic (deprotonated) ubisemiquinone.


Assuntos
Citocromos/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Ubiquinona/análogos & derivados , Ânions , Grupo dos Citocromos b , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Ubiquinona/química
19.
J Chem Inf Model ; 56(6): 1112-6, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27196035

RESUMO

Molecular dynamics (MD) simulation engines use a variety of different approaches for modeling molecular systems with force fields that govern their dynamics and describe their topology. These different approaches introduce incompatibilities between engines, and previously published software bridges the gaps between many popular MD packages, such as between CHARMM and AMBER or GROMACS and LAMMPS. While there are many structure building tools available that generate topologies and structures in CHARMM format, only recently have mechanisms been developed to convert their results into GROMACS input. We present an approach to convert CHARMM-formatted topology and parameters into a format suitable for simulation with GROMACS by expanding the functionality of TopoTools, a plugin integrated within the widely used molecular visualization and analysis software VMD. The conversion process was diligently tested on a comprehensive set of biological molecules in vacuo. The resulting comparison between energy terms shows that the translation performed was lossless as the energies were unchanged for identical starting configurations. By applying the conversion process to conventional benchmark systems that mimic typical modestly sized MD systems, we explore the effect of the implementation choices made in CHARMM, NAMD, and GROMACS. The newly available automatic conversion capability breaks down barriers between simulation tools and user communities and allows users to easily compare simulation programs and leverage their unique features without the tedium of constructing a topology twice.


Assuntos
Armazenamento e Recuperação da Informação/métodos , Simulação de Dinâmica Molecular , Aminoácidos/química , Automação , Carboidratos/química , DNA/química , Lipídeos/química , Oligopeptídeos/química , RNA/química , Software
20.
Biophys J ; 109(10): 2012-22, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26588561

RESUMO

Slow diffusion of the lipids in conventional all-atom simulations of membrane systems makes it difficult to sample large rearrangements of lipids and protein-lipid interactions. Recently, Tajkhorshid and co-workers developed the highly mobile membrane-mimetic (HMMM) model with accelerated lipid motion by replacing the lipid tails with small organic molecules. The HMMM model provides accelerated lipid diffusion by one to two orders of magnitude, and is particularly useful in studying membrane-protein associations. However, building an HMMM simulation system is not easy, as it requires sophisticated treatment of the lipid tails. In this study, we have developed CHARMM-GUI HMMM Builder (http://www.charmm-gui.org/input/hmmm) to provide users with ready-to-go input files for simulating HMMM membrane systems with/without proteins. Various lipid-only and protein-lipid systems are simulated to validate the qualities of the systems generated by HMMM Builder with focus on the basic properties and advantages of the HMMM model. HMMM Builder supports all lipid types available in CHARMM-GUI and also provides a module to convert back and forth between an HMMM membrane and a full-length membrane. We expect HMMM Builder to be a useful tool in studying membrane systems with enhanced lipid diffusion.


Assuntos
Membrana Celular/química , Simulação de Dinâmica Molecular , Software , Sequência de Aminoácidos , Lipídeos de Membrana/química , Proteínas de Membrana/química , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA